
Generating Emotionally Relevant Musical Scores
for Audio Stories

Steve Rubin
University of California, Berkeley

srubin@cs.berkeley.edu

Maneesh Agrawala
University of California, Berkeley

maneesh@cs.berkeley.edu

ABSTRACT
Highly-produced audio stories often include musical scores
that reflect the emotions of the speech. Yet, creating effec-
tive musical scores requires deep expertise in sound produc-
tion and is time-consuming even for experts. We present
a system and algorithm for re-sequencing music tracks to
generate emotionally relevant music scores for audio stories.
The user provides a speech track and music tracks and our
system gathers emotion labels on the speech through hand-
labeling, crowdsourcing, and automatic methods. We develop
a constraint-based dynamic programming algorithm that uses
these emotion labels to generate emotionally relevant musi-
cal scores. We demonstrate the effectiveness of our algorithm
by generating 20 musical scores for audio stories and show-
ing that crowd workers rank their overall quality significantly
higher than stories without music.

Author Keywords
Audio stories, storytelling, musical scores, music retargeting

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
The tradition of oral storytelling is thousands of years old
and still endures today through digital recordings like audio-
books and podcasts. At audiobook sites like Audible [2] and
LibriVox [13], these recordings number in the hundreds of
thousands. In 2013, users downloaded over 500 million hours
of audiobooks from Audible alone [2], nearly 15% of Amer-
icans listened to an audiobook [37], and 14% of Americans
listened to podcasts every month [32].

Highly-produced audiobooks, podcasts, and children’s stories
combine a speech recording, which vocally conveys the story,
with a musical score that serves to emphasize and add nuance
to the emotions of the speech. Yet, crafting such a musical
score involves smoothly re-sequencing, looping and timing
the music to match the emotions in the story as they change

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the au-
thor/owner(s).
UIST 2014, October 5-8, 2014, Honolulu, HI, USA.
ACM 978-1-4503-3069-5/14/10.
http://dx.doi.org/10.1145/2642918.2647406

sp
ee

ch
ou

tp
ut

sc
or

e
m

us
ic

pause pause

pause

happy beat calm beatsad beatnervous beat

Figure 1. Our algorithm re-sequences the beats (circles) of the input
music (bottom row) to match the emotions of the speech (top row). Our
algorithm inserts pauses in speech and music, and makes musical tran-
sitions that were not in the original music in order to meet these con-
straints.

over the course of the narrative. This process requires signif-
icant audio production expertise and is challenging even for
expert producers. As a result, most of the recorded stories
available today focus on providing the speech track and do
not contain a musical score.

In this paper we present a system that allows users with no
audio editing expertise to generate high-quality, emotionally
relevant music scores for audio stories. To generate a score,
our system requires a speech track with associated emotion
labels, and one or more music tracks with associated emotion
labels. Our system uses a dynamic programming optimiza-
tion approach to re-sequence the input music tracks so that
the emotions of the output score match those of the speech
(Figure 1). We studied how expert producers use music in
audio stories and incorporate additional constraints into the
optimization that correspond to structural and stylistic design
decisions in their scores.

We investigate three techniques for labeling the speech and
music. We provide a manual interface for hand-labeling
speech emotion by annotating a text transcript, and for label-
ing music emotion by listening to and annotating segments
of the music. We also provide a crowdsourcing method for
generating the labels, where crowd workers use the labeling
interface and our system combines their responses. Finally,
our system includes a fully automatic method for computing
the emotion labels for the speech and music using sentiment
analysis techniques. These three approaches offer different
trade-offs in time and label quality that affect the overall qual-
ity of the music scores that our system generates.

We demonstrate the effectiveness of our score generation
tools by generating a total of 20 musical scores including ex-
amples using each of our three labeling methods. We ask
listeners to rank the overall quality of these results. Surpris-
ingly, listeners rank the results generated with our crowd-

labeling technique as high or higher than the hand-labeled re-
sults, which are in turn better than results using our automatic
approach and no music. Our system generates scores that are
preferable to no musical score for all of the speech tracks. We
also investigate the inter-labeler reliability of agreement and
find that human-produced labelings tend to agree more with
each other than with our automatic labelings.

RELATED WORK
Automatically scoring audio and video stories is a longstand-
ing problem in multimedia research. Foote et al. [9] auto-
matically create music videos by editing video clips to match
a piece of music. Their method finds suitable locations to
cut video and then splices video to match points in music
where audio features change. Our work instead edits the mu-
sic to create a soundtrack tailored to the speech by matching
emotions rather than low-level audio/video features. Mon-
teith et al. [18, 17] generate new music MIDIs to match
automatically-labeled emotions in stories. They learn gen-
erative models of different music emotions and then sam-
ple new music from these models. However, because their
algorithm only considers local matching of speech and mu-
sic, the soundtracks they generate may not contain story-level
structure or cohesion. Our algorithm uses the emotion labels
across an entire story to generate a globally coherent musical
score. We generate emotionally relevant musical scores by
re-sequencing existing, high quality music tracks instead of
MIDIs, and we provide more options for emotion labeling.

Rubin et al. [22] focus on the process of editing speech and
adding music to audio stories. Their system offers a high-
level editing workflow and requires a user-in-the-loop to re-
fine speech and music edits. Our system asks for even higher-
level input and does not require a user to specify or refine
edits directly. Earlier work from Rubin et al. [21] allows
producers to generate a musical score for a short section of
speech, while our system creates an optimal musical score
for an entire story. Neither of these systems deal directly with
matching the emotions of speech and music. Our system al-
lows novices to create emotionally relevant musical scores for
audio stories.

Dynamic programming is a common strategy for concate-
native music synthesis, where short music clips are re-
sequenced from a database to create new music that mimics
existing music, or to create music that follows certain note
patterns [28, 27] Our work follows this general approach, but
we offer constraints that generate emotionally relevant music
scores rather than music that imitates other music. Wenner
et al. [34] and Rubin et al. [22] present methods for music
retargeting to find optimal paths through music that match
constraints of videos or audio stories. Our work builds on
these algorithms and describes new constraints to match emo-
tions of the speech and music, add pauses with flexible length,
bound music segment lengths, and create scores from multi-
ple music tracks. Other work applies belief propagation [29]
and genetic algorithms [33] to music re-sequencing, but we
use dynamic programming instead to efficiently find opti-
mal solutions. Algorithms for video synthesis often apply
dynamic programming techniques as well, as in Schödl et

Speech
Audio
Transcript
Labels

U
se

r

Cr
ow

d

Au
to

Music (at least 1 track)
Audio
Labels

Inputs

Sources

Optimization

re-sequencing music
to �t emotion constraints

Output

story with
musical score

Figure 2. Our automated musical score generation system requires a
speech track and music tracks, and emotion labels on those tracks. Our
algorithm re-sequences the music tracks to create an output musical
score that matches the emotions of the speech. The green boxes denote
the sources—user, crowd, and fully automatic—that our system provides
for obtaining each input. Our system also requires a speech transcript so
users and crowd workers can more quickly label the emotions by read-
ing the text instead of listening to the speech.

al.’s [26] video textures, and Arikan et al.’s [1] annotation-
based character motion synthesis.

Affect prediction is a well-studied problem for speech [6],
text [4], and music [11]. We draw on these techniques to
provide automatic emotion labeling tools in our system. Our
work concentrates on the application of affect labeling and
understanding rather than on its prediction.

LABELING EMOTIONS
Figure 2 shows our pipeline for generating emotionally rele-
vant musical scores. A user begins by selecting a speech track
such as an audiobook, and one or more instrumental music
tracks (i.e., music without lyrics). Our system then gathers
emotion labels for each of the speech and music tracks. After
collecting these labels, our system constructs a musical score
by re-sequencing the input music tracks so the emotion labels
of the output music match the emotion labels of the speech.

Our system offers three methods for obtaining the required
emotion labels: hand-labeling, crowd-labeling, and automatic
labeling. These three methods offer trade-offs in time, effort,
and personalization. Hand-labeling produces emotions that
reflect the user’s emotions and may result in the most personal
musical score, but it takes the most time for the user. The
crowd-labeling method requires no extra work on the user’s
part and incorporates human ratings. However, this method
takes more time than hand-labeling to acquire emotion labels.
Finally, the fully automatic method produces labels immedi-
ately, but they may not accurately reflect the personal emo-
tions that the user—or any human—feels about the story and
the music. As we will show, all of these methods require
a speech transcript, which may cost money to obtain. The
crowd-labeling method has the added cost of paying workers.

contented –V +V

+A

–A

happy

calm

nervous

sad

Affect researchers have found Russell’s
circumplex model [23] of quantifying
emotion with ‘valence’ and ‘arousal’
to be highly consistent with behavioral
and cognitive neuroscience study re-
sults [20]. The valence dimension indi-
cates whether an emotion is positive or
negative, whereas arousal indicates the
intensity of the emotion. A user does

not need to learn the circumplex model. Instead, we focus
on four emotions, happy, nervous, sad, and calm, because
they almost evenly span the circumplex [23]. As shown in
the inset, we set their coordinates to (.95, .31), (−.31, .95),
(−.95,−.31), and (−.95, .31), respectively, an equal distri-
bution near their original locations [20].

Speech Emotion Labels
Our goal is to break the speech into segments of similar emo-
tions. Segmenting a speech track into emotionally similar
segments based solely on the raw waveform requires careful
listening and can be difficult. In text, however, paragraphs
usually represent topically-coherent segments that convey
one predominant emotion. Therefore, we obtain a text tran-
script of the speech and use its paragraph boundaries to seg-
ment the speech.

Audiobooks and even some podcasts often have readily avail-
able transcripts, but if not, the user can obtain one a from
crowdsourced transcription site like CastingWords [5] for
$1.00 per minute of audio. We time-align the text tran-
script and the speech using a variant of the Penn Phonetics
Lab Forced Aligner [36] from Rubin et al [22]. The time-
alignment allows our system to find the segment of speech
that corresponds to each paragraph of the text.

The user chooses one of the three labeling methods to get
emotion labels for each speech segment.

Hand-labeling the speech. If users wish to personalize the
emotion labels of the speech, they can label the emotion of
each paragraph of the text transcript by hand (Figure 3).

Crowd-labeling the speech. To crowd-label the emotions of
the speech, our system posts tasks to Amazon’s Mechanical
Turk. These tasks are identical to the hand-labeling interface
(Figure 3).

Crowd workers often try to complete tasks as quickly as pos-
sible so they can maximize their hourly rate. Such workers
may not fully engage with the speech or its emotions and
produce inaccurate emotion labels. Yet, emotions labels can
be subjective, and there is no way to test the accuracy of a
worker’s labeling. Our approach is to obtain emotion labels
from multiple workers and then select the labeling of a single
worker that best represents all of the workers.

We interpret each worker’s complete speech labeling as a
sample from the distribution of possible speech labelings, first
assigning each paragraph i a distribution pi where pi(l) is the
probability that a worker labeled paragraph i with emotion l
in all of the labelings we have collected. For example, if we
have ten workers total and 7 label paragraph 1 as ‘sad’ and 3
label it as ‘calm’—then p1(sad) = 7/10, p1(calm) = 3/10,
and p1(happy) and p1(nervous) are both zero. We then find
the worker that gave the most probable labeling according to
this distribution. Suppose ` = {l1, . . . , lk} is a worker’s la-
beling of the sequence of paragraphs in the speech. We com-
pute the probability of this labeling as

P (`) =

k∏
i=1

pi(li).

Our system computes this probability for each worker’s la-
beling and assigns the labeling with the highest probability
to the speech. An alternative to our most probable worker
labeling approach is to choose the most frequently labeled
emotion for each paragraph independently. However, such a
voting scheme can yield emotion transitions between para-
graphs that did not appear in any of the individual worker’s
labelings. In contrast, our approach yields a labeling that is
guaranteed to be consistent with at least one worker’s label-
ing. This strategy of picking one representative rather than
averaging or aggregating worker results has been used in re-
cent work to ensure self-consistent results [12, 35].

Automatically labeling the speech. To automatically label
the speech, our system estimates the emotion of each para-
graph based on the emotion conveyed by each word. Warriner
et al. [31] have collected a corpus of crowdsourced valence
and arousal ratings for nearly 14,000 English words. We nor-
malize these scores by the global valence/arousal mean and
standard deviation. We then compute the average of the nor-
malized valence/arousal scores of all words in a paragraph.
Our system projects those averages to the nearest of our four
labels to obtain an emotion label for each paragraph.

Music Emotion Labels
Our system provides techniques for music emotion labeling
similar to our speech labeling methods. As in speech labeling,
we first break the music into segments. Structural segments
of music often contain one predominant emotion because the
features that differentiate structure—timbre, pitch, volume,
and self-similarity—are also indicative of music emotion.
Following McFee and Ellis [15], our system segments mu-
sic by computing a hierarchical clustering of self-similarities
in a track and finding an optimal pruning of the cluster tree.

The user selects one of the three labeling methods to get emo-
tion labels for each music segment.

Hand-labeling the music. If users wish to personalize the
emotion labels of the speech, they can listen to and assign
labels for each music segment (Figure 3) As in hand-labeling
the speech, this method is preferable for users that have time
and desire a personalized musical score.

Crowd-labeling the music. To crowd-label the emotions of
the music, our system asks workers on Mechanical Turk to
listen to and label the emotions of the music segments for
an entire track (Figure 3). Our system then selects a final
emotion labeling by finding the worker’s labeling that best
represents all of the worker labelings (see earlier section on
Crowd-labeling the speech).

Automatically labeling the music. Schmidt et al. [24, 25]
have developed methods for automatically predicting the va-
lence and arousal of music. Their MoodSwings Turk dataset
consists of a large set of crowd-generated, per-second va-
lence/arousal labels and accompanying audio signal pro-
cessing features (MFCCs [14], spectral contrast [10], and
chroma [7]). Our goal is to automatically predict the emotion
of each music segment, but the dataset contains per-second
labels and no notion of segments. We follow Schmidt et

Music labeling interfaceSpeech labeling interface

Figure 3. Our interface for labeling speech emotion (left) asks the labeler to annotate each paragraph with an emotion. Our interface for labeling music
emotion (right) asks the labeler to label each music segment with an emotion.

al. [24] and train a multiple linear regression model on the
MoodSwings Turk dataset to predict per-second emotions.

Emotion in music has a time dependency. That is, emotions
at times before time t influence the emotion at time t. To ac-
count for this dependency, our model uses ten seconds (times
t − 9, . . . , t) of per-second MFCC features to predict the va-
lence and arousal at time t [24]. Our system predicts the va-
lence/arousal at each second of each music segment and then
finds the average of the predictions. Because of a limited cor-
pus of music in the training set, this model often reports that
all segments of a track have the same emotion whereas human
labelers give more varied labelings. We subtract the overall
segment average from each music segment’s average to get a
new, more varied prediction. Then, we project each predic-
tion to the nearest of our four emotion labels to get a label for
each segment.

SCORE GENERATION ALGORITHM
We designed our score generation algorithm to generate mu-
sical scores that match the emotion of the speech while also
following other characteristics of high quality musical scores.
We identified these characteristics by listening to hours of
expertly-produced audio stories, noting structural and stylis-
tic patterns in their musical scores. We further studied books
and online sources on audio story production to refine these
characteristics. Figure 1 shows an example of how our al-
gorithm re-sequences input music to match the emotions of
the speech. To generate an emotionally relevant score, our
algorithm translates emotion matching and our other con-
straints into numeric costs. The two primary costs are match-
ing costs—costs of how well the music emotions match the
speech emotions—and transition costs—costs for beat-to-
beat transitions in the music. Once our algorithm computes
these costs, it searches for the lowest cost musical score using
dynamic programming.

We specify our optimization and constraints on beats, which
are short, structural units of time in music. Formally, we con-
sider a piece of music as a set of n beats B = {b1, b2, . . . , bn}
where b1, b2, . . . , bn is the natural order of beats in the music.
To detect the beats in a piece of music we apply Ellis’ beat
tracking algorithm [7]. Beats lengths within a song vary be-
cause tempo often shifts within a music track, so we use the
average beat length as our unit of time throughout the algo-
rithm. Next we compute m, the number of music beats re-
quired to score the speech. We set m to the duration of the

TM

n
m

us
ic

 b
ea

ts

n music beatsm speech beats

n
m

us
ic

 b
ea

ts

Figure 4. The matching cost table M (left) has lower cost when music
beat bi and speech beat k have the same emotion. The transition cost
table T (right) gives the cost of moving between beat bi and beat bj .
These examples show transition and matching cost tables with only the
transition and matching constraints. Darker colors imply cheaper costs.

speech track divided by the average beat length of the mu-
sic. Our algorithm searches for a sequence s of m beats that
minimizes the matching and transition costs; it then generates
the output musical score by re-sequencing the original beats
according to s. Figure 1 shows an example of re-sequencing
music beats (bottom row of beats) to match story emotions
and duration (top row of beats).

Tables M with size n × m and T with size n × n store the
transition and matching costs, respectively (Figure 4). Entry
Mi,k is the cost for playing beat bi at speech beat k in the
output score. The matching cost encodes how well the mu-
sic emotion fits the speech emotion. Entry Ti,j is the cost for
moving from beat bi to beat bj and is independent of the loca-
tion in the output score. The transition cost encodes whether
the music could make a seamless-sounding jump from bi to
bj . Our algorithm searches for the sequence of beat indices
s = [s1, . . . , sm | si ∈ {1, . . . , n}] of m beats that minimizes

cost(s) =

m∑
k=1

Msk,k +

m−1∑
k=1

Tsk,sk+1
(1)

where k is the speech beat index in the output score. A re-
cursive form of this equation enables us to apply dynamic
programming to find the optimal beat sequence. So, the re-
cursive minimum cost of a length-m sequence s ending with
beat bj is

c(j,m) = min
i∈{1,...,n}

(c(i,m− 1) +Mj,m + Ti,j) .

The right-hand side is a minimum over three terms. The first
term, c(i,m − 1) is the minimum cost (m − 1)-length se-
quence that ends in beat bi. The second and third terms,
Mj,m + Ti,j are the matching and transition costs for the last

beat bj . The optimal sequence s with any ending beat then
has cost

min
j∈{1,...,n}

c(j,m).

Because we have expressed the minimum cost sequence re-
cursively, in terms of its subproblems, we can apply dynamic
programming to find the optimal beat sequence.

Matching costs
The main purpose of our system is to create music that
matches the emotions of the accompanying speech. The
speech and music contain emotion tags (happy, nervous,
sad, and calm) and their respective numerical values in va-
lence/arousal space. We set matching costs in table M so the
valence and arousal of the optimal output score matches the
valence and arousal of the speech as closely as possible.

To encode this constraint in our optimization, we compute
the `2 distanceDva(i, k) between speech valence/arousal and
music valence/arousal at each music beat bi and speech beat
k. We set matching cost Mi,k = wvaDva(i, k), where wva is
a constant that controls the importance of the matching cost
in our optimization.

Transition costs
A transition from beat bi to another beat bj sounds natural
when the timbre, pitch, and volume of bj are similar to the
timbre, pitch, and volume of bi+1, the next beat in the original
beat sequence. We compute the transition cost table T by
combining timbre, pitch, and volume distances (Dt, Dp, and
Dv) for each pair of beats:

Ti,j = wtDt(i+ 1, j) + wpDp(i+ 1, j) + wvDv(i+ 1, j)

Our algorithm estimates timbre differences by computing
MFCCs [14] for each beat, and then computing the cosine
distanceDt(i, j) between MFCCs for pairs of beats bi and bj .
We similarly estimate pitch differences by computing chroma
features [7] for each beat, and then computing the cosine dis-
tances Dp(i, j) between beat pairs.

Two beats that are similar in pitch and timbre may not be
similar in volume. A large volume difference between beats
can create a jarring listening experience. We compute the
RMS energy, a measure of volume, of each beat and then take
the absolute energy difference between all beat pairs (bi, bj)
to get Dv(i, j).

The weights wt, wp, and wv allows us to control the accept-
able range of timbre, pitch, and volume differences in beat
transitions. These transition cost constraints ensure that the
original beat progression—a natural sounding progression—
has zero transition cost (i.e., Ti,i+1 = 0).

Structural constraints
Our algorithm can generate musical scores that match the
emotions of speech using only the basic matching cost and
transition cost constraints. However, high-quality scores con-
tain additional structure by using pauses and limiting music
segment lengths.

T
p1

∞

∞

p2 p3p4

p1
p2
p3
p4

b1
b1

bn

bn

. . .

. . .

πmax = 4πmin= 3

Figure 5. Our algorithm enables
pauses in the musical score by ex-
tending the transition cost table T
with pause beats.

Pauses. In most high-
quality audio stories, the mu-
sic is not constantly playing.
Instead, music occasionally
fades in and out to create
sections of the story without
music. These pauses call at-
tention to the fact that the
musical score exists, forcing
listeners to think about the
music and its emotions.

Figure 5 shows how we ad-
just our transition cost table
T to accomodate pauses in a
musical score. We first define πmin and πmax, the minimum
and maximum beat lengths of pauses, respectively. We con-
catenate πmax rows and columns to the original T (the blue
block in Figure 5 is the original T). The πmax new beats are
pause beats. Each of these added beats pi represents the ith
beat of a pause.

Every pause in music starts at the first pause beat; any beat in
music can transition to beat p1 but no other pause beats (green
rectangle in Figure 5). To maintain the invariant that pi is the
ith beat of a pause, we only allow pi to transition to pi+1 (pur-
ple squares). Any pause beat at or above the minimum pause
length πmin has a free cost transition back to any music beat
(red rectangle). In practice, we assign a cost κstart to enter-
ing a pause (green rectangle) that is greater than the cost of
a natural-sounding music transition (see Setting Parameters,
below). This cost ensures that our score does not add pauses
when it can play good-sounding music. We also add a small
cost of κintra to transitions between pi and pi+1 if i > πmin.
Without this cost, most pauses would have length πmax be-
cause the intra-pause transitions would be free while optimal
sequences in music often contain non-free transitions.

Music segments. High-quality audio stories tend not to play
overly short or long segments of music. Short segments do
not give the music time to integrate with the speech and its
emotions, while overly long segments can cause the listener
to “tune out,” or ignore the music. Our algorithm constrains
the length of music segments in the output score.

Figure 6 shows how we constrain the length of a music seg-
ment to at least δmin beats and at most δmax beats. In order to
keep track of the lengths of music segments, we create a new
transition cost table T ′. Each index in the table represents
a (beat, segment-length) pair (bi, dk) where segment length
dk represents the kth beat in the current music segment. We
construct this new table by copying blocks from the existing
transition cost table (the colored blocks from Figure 5 corre-
spond to the colored blocks in T ′ in Figure 6).

To maintain the invariant that a beat a segment length dk is
the kth beat of the music segment, we only allow (bi, dk) to
transition to (bj , dk+1) for any beats bi and bj (blue squares
in Figure 6). Once the music has been playing for δmin beats,
a pause can begin. Any (beat, segment-length) pair that is at
or above the minimum segment length δmin can transition to

T’

pa
us

es

pauses

∞

∞

(b1, d1)

(b , d1)n

(b
1, d

1)
(b

 ,
d1

)
n

(b1, d5)

(b , d5)n

. .
.

. . .
. . .

. . .

(b
1, d

5)
(b

 ,
d5

)
n.

δmin= 3, δmax= 5

M’
m

Parameters:

Figure 6. We provide constraints on the length of music segments by
creating a new matching cost table M ′ and transition cost table T ′. The
indices of the new tables are (beat, segment-length) pairs rather than
just beats. We build the M ′ table from δmax copies of M , except that
the music must start at beat-length d1 and end at beat-length greater
than δmin. We copy blocks of table T in Figure 5, indicated by colors,
to create table T ′.

the first pause beat p1 (green rectangles). We copy the intra-
pause transitions directly from T (purple squares). Finally,
a pause must transition back to a (beat, segment-length) pair
at segment length d1, because all music segments start with
length 1 (red rectangle).

We also create a new M ′ with constraints for music segment
lengths. The first (beat, segment-length) pair of the output
score must be at music segment length 1. Otherwise, we
could not enforce the minimum length on the first music seg-
ment in the output score. The last (beat, segment-length) pair
of the output score must be at music segment length at least
δmin, so the last segment of the score is longer than the min-
imum segment length. We set the matching costs to infinity
where these conditions do not hold (see M ′ in Figure 6).

Stylistic constraints
Expertly created scores employ specific stylistic techniques in
order to improve the overall score quality. We have designed
constraints to imitate these techniques.

Minimum loop constraint. High-quality musical scores of-
ten contain loops to allow a short section of music to score
a longer section of speech, but if these loops are too short,
the music can sound unnaturally repetitive. We introduce a
minimum loop constraint to prevent the score from looping
sections of music that are less than eight beats long by setting
Ti,j =∞ if i− 8 < j ≤ i.
Musical underlays. Expert producers often add musical un-
derlays to audio stories, aligning changes in structure, timbre,
and volume of music with important points of emphasis in
speech. After the music change, the speech pauses for a short
period of time and the music plays solo. Rubin et al. [21]
describe the benefits of adding musical underlays to audio
stories.

To generate musical underlays in our optimization, we first
preprocess the input speech, adding 6 second pauses at all

T1 p

p ∞

∞

T2 p

p

Music
track 1

Music
track 2

∞

∞

1 12

2

∞

∞

∞

T p

p

M1

M2

M

p

p

p

n1

n2

n1

n2

m

1

1

2

2

Figure 7. Our algorithm generates scores composed of multiple music
tracks. It first computes tables M (left) and T (right) for each music
track using a consistent speech beat unit, and then combines the tables
to form the final M and T . This construction of T does not allow inter-
song transitions, but does allow for efficient optimization.

emotion changes—emphasis points often occur at emotional
changes in the speech, so these are the candidate locations for
musical underlays.

We then modify the matching table M to align music change
points with the speech emphasis points we added in the pre-
processing step. To do this, our algorithm first finds the set of
change point beats in the music using a novelty-based change
point detection algorithm [8, 22]. This algorithm computes a
similarity matrix of per-beat music features, and then identi-
fies large changes on the diagonal, which indicate significant
differences in the music features. We examine the music seg-
ment on either side of each change point to identify change
points that correspond with transitions in emotion labels. Our
transition cost table gives a large preference to playing mu-
sic change points in the output score when emotion changes
in music match emotion changes at speech emphasis points.
If bi is a change point whose emotion change matches the
emotion change at speech beat k, we increase Mj,k by con-
stant κchangepoint for all j 6= i. This effectively penalizes all
other music beats when a change point music beat matches
the speech emotion change.

Another strategy expert producers use to emphasize points in
the speech is to start or stop the music at those points. To ap-
ply this strategy, we penalize music stopping and starting at
points other than emotion change boundaries. If speech beat
k is not an emotion change boundary, we add cost κexit to
Mp1,k and κenter to Mpi,k for i ≥ πmin. This approach low-
ers the relative cost for starting and stopping music at emotion
changes in the story.

After the algorithm has generated the optimal score, some of
the 6 second speech pauses we added in preprocessing may
align with pauses in the musical score. Rather than playing
six seconds of silence, our algorithm contracts the final audio,
deleting regions where a pause in speech aligns with a pause
in the music.

Multiple music tracks. Musical scores often contain seg-
ments from multiple music tracks, especially for longer sto-
ries. Moreover, most music tracks do not contain every
emotion, so using multiple tracks increases the likelihood of
matching the output score to the speech emotions.

Figure 7 shows how our algorithm combines transition and
matching cost tables from two songs. We insert the music
beat transition costs from each music track’s T along the di-
agonal (blue squares in Figure 7. Music beats can only tran-

Speech tracks Generated musical scores

Speech name Author Narrator Dur. Source Hand labeled Crowd Labeled Auto Labeled

Damon and Pythias Ella Lyman Cabot Ginger Cuculo 1:38 LibriVox alice alice, 2815ad, highschool, tub, learn alice
Not That I Care Molly Reid James Wood 2:38 NPR 2815ad 2815ad, alice+timemachine 2815ad
Roosts Zach Brockhouse Michael Cunningham 3:12 NPR tub+highschool tub+highschool, intriguing+alice tub+highschool
Goldilocks LearnEnglish Kids 2:10 YouTube learn learn, timemachine learn
The Story of an Hour Kate Chopin Matt Bohnhoff 7:20 LibriVox intriguing+learn

Table 1. We generated 20 scores spanning five different audio stories. The short names on the right correspond to music in Table 2. Crowd listeners
evaluated the musical scores in bold. A ‘+’ represents a musical score generated with two tracks using our multiple tracks constraint.

Short name Music track Artist

alice Alice Returns Danny Elfman
2815ad 2815 A.D. Thomas Newman
highschool Highschool Lover Air
learn You Learn Jon Brion
tub The Bathtub Dan Romer
timemachine Time Machine Ryan Miller
intriguing Intriguing Possibilities Trent Reznor & Atticus Ross

Table 2. We used seven different instrumental music tracks in the musi-
cal scores we generated.

sition to other beats within the same music track or to pause
beats.

After a pause ends, either music track can play (red rectangle,
Figure 7). We stack the two matching cost tables to create a
new matching cost table that covers all possible beats in the
musical score (orange rectangles, Figure 7). The running time
of our algorithm increases linearly in the duration of music
added, instead of quadratically, because it does not need to
consider inter-music-track transitions.

Setting parameters
We set the main structural parameters based on listening to
audio stories: πmin of 20 seconds, πmax of 35 seconds, δmin

of 20 seconds, and δmax of 90 seconds.

Next, we set the distance weights in our optimization empir-
ically, based on the importance of the constraints. We set
the acoustic distance parameters wt = 1.5, wp = 1.5, and
wv = 5—volume differences are small in magnitude relative
to timbre and chroma cosine distance. We set the emotion
matching distance parameter wva = 1.

Finally, we set the cost parameters: the cost for entering a
pause κpause = 1.4, empirically less than an audibly “bad”
music transition; the intrapause penalty κintra = .05, cheaper
than all but perfect music transitions; the music start and stop
costs—which penalize otherwise free transitions—to small
κenter = κexit = .125. Lastly, κchangepoint = 1, which
strongly favors inserting musical underlays whenever possi-
ble.

Score synthesis
The dynamic programming returns a sequence s of beat and
pause indices. We then synthesize the final output score from
s by concatenating the audio data for each beat and pause.
We ensure smooth-sounding music transitions by inserting
crossfades between beats si and si+1 if they are not consec-
utive beats in the original music. In some cases, the musi-
cal score becomes out of alignment with the speech because
music beats have variable length and we assume a fixed beat

length on the speech. Our system corrects this problem ev-
ery time the music pauses. If a pause segment ends at speech
beat k, we start the music again exactly at speech beat k times
the average beat duration regardless of the current time in the
output. This re-aligns the score with the speech after every
pause.

Our system adjusts the volume of the musical score so it is
always audible but never overpowers the speech. We con-
trol the volume of the output score in two steps. First, we
add volume curves for the score to follow: music fades in
for three seconds after music pauses to a low level, increases
exponentially to a high-level at speech emphasis points, de-
creases rapidly to a low level after music solos, and fades out
for three seconds as music pauses begin. The second step ad-
justs these volumes relative to the speech volume. For every
segment of the final output where both speech and music are
playing, we adjust the decibel level of the music to lie 12 dB
below the decibel level of the speech. Finally, we notch the
2.76 kHz and 5.63 kHz music frequencies by 6 dB because
those frequencies contain important acoustic information for
decoding consonants and vowels in speech [16].

RESULTS
We have generated 20 musical scores spanning seven music
tracks and five speech tracks. We used all three of our emo-
tion labeling techniques: hand-labeling, crowd-labeling, and
automatic labeling. Table 1 shows our input speech tracks and
summarizes the results we have generated, and Table 2 details
our music tracks. Our supplemental material1 includes all of
these audio results. The first author of this paper labeled the
emotions of each story by hand and we had an average of 17.5
crowd workers label each story at an average cost of $4.38
per story. The first author hand-labeled the music segments
for all tracks, and we had an average of 18.5 crowd workers
label the segments ($4.63 per track). Our algorithm computes
the music track distance tables as a preprocess. On a 2.7 GHz
Intel Core i7 processor with 8 GB of RAM, our system takes
less than 1 second to find and generate the optimal musical
score for a three minute story and two three minute music
tracks. If we add music segment length constraints with dmin

of 20 seconds and dmax of 90 seconds, the optimization takes
3 minutes. We generated all of our results with dmin of 20
seconds and dmax of 90 seconds except for “The Story of an
Hour” musical score, which we use to demonstrate a longer
story with a higher dmin (see supplemental material). We also
include a basic example of a musical score that we generated
for a children’s book video.

1http://vis.berkeley.edu/papers/emotionscores

http://vis.berkeley.edu/papers/emotionscores

Mean rank of
overall quality

Damon and Pythias by Ella Lyman Cabot Not That I Care by Molly Reid

Roosts by Zach Brockhouse Goldilocks

hand-labeled
crowd-labeled

automatically labeled
no music

Alice Returns - Danny Elfman 2815 A.D. - Thomas Newman

The Bathtub - Dan Romer, Highschool Lover - Air You Learn - Jon Brion

Story:
Reader:
Music:

Ginger Cuculo [librivox.org] James Wood [NPR]

Michael Cunningham [NPR] LearnEnglish Kids [YouTube]

Best
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Damon and Pythias Not That I Care Roosts GoldilocksStory:
Worst

ha
nd

cr
ow

d
au

to
ha

nd
cr

ow
d

au
to

Figure 8. We visualize twelve of our generated results above. Each speech/music pair was generated using all three of our labeling methods. Evaluators
on Mechanical Turk listened to three different scores for a speech track and the original speech without music. These charts show the average ranking
in overall quality of the four clips among the evaluators.

Figure 8 shows a visualization of the twelve of our results—
four speech/music combinations with each of the three la-
beling methods—which correspond to the bold-faced results
in Table 1. The emotions in the speech and music consis-
tently match in the hand- and crowd-labeled results. In two
instances (“Roosts”/crowd and “Not That I Care”/crowd), an
incorrect emotion plays in the music for a small number of
beats, but neither is audibly noticeable. The automatic results
do not match emotions as strongly. In “Not That I Care”/auto
and “Goldilocks”/auto, the automatic approach matches large
sections of “happy” speech with other music emotions. This
happened because the automatic music labeling did not pre-
dict any “happy” segments of music, while the automatic
speech labeling predicted spans of “happy” that are longer
than the maximum length pause πmax.

Evaluation. To evaluate our results, we asked crowd work-
ers to listen to and rank four versions of a story—hand-
labeled, crowd-labeled, automatically labeled, and no mu-
sic—in terms of overall quality. For each story, twelve US
workers, each with over 95% approval rates on Mechanical

Turk, evaluated the results. We rejected evaluation tasks if
a worker did not spend enough time on the task to listen to
all of the audio stories; we removed 24.6% of the ratings
based on this test. Figure 8 shows the average ranking for
each of the four versions for each speech track. Surprisingly,
listeners ranked the results generated using crowd labels (av-
erage rank over the four stories of 2.21) as high as hand-labels
(average of 2.3). Both methods generated higher quality re-
sults than automatic labels (average of 2.52) and the stories
with no music (average of 2.95). We find the differences
in rankings to be significant (χ2(3) = 9.02, p < .05) us-
ing Friedman’s nonparameteric test for differences in ranks.
Subsequent pairwise comparisons using the Wilcoxon signed
rank test find a significant preference for crowd results over
no music (p < .005) and hand-labeled results over no music
(p < .05). This result suggests that the “wisdom of crowds”
might apply to affective tasks. Our results also show that for
all of the speech tracks, our system generates musical scores
that improve in overall quality versus the speech without mu-
sic.

To evaluate the consistency of the emotion labels, we com-
pute Fleiss’ and Cohen’s kappa values. The average Fleiss’
kappa is 0.271 between workers for the speech labels and 0.2
for the music labels. The average Cohen’s kappa between
our hand-labeled emotions and the most probable crowd la-
beling is 0.189 for speech and 0.437 for music, which sug-
gests a large difference between the typical crowd-labeling
and our expert hand-labeling. Finally, the reliability between
our hand-labels and the automatic labels is nearly zero, at
kappa of 0.0484 for speech and 0.136 for music. This discrep-
ancy between human and automatic labels is a likely cause of
the automatic method’s low ranking in our listening evalua-
tion.

CONCLUSION AND FUTURE WORK
Emotionally relevant musical scores can improve the quality
and engagement of an audio story, but they are challenging
and time-consuming to produce. We have presented a system
for collecting emotion labels on speech and music, and an
algorithm for generating an optimal score that matches emo-
tions of music to speech. With this system, novice produc-
ers can generate high-quality musical scores for entire stories
without needing audio editing expertise.

We believe there are promising directions in automatically
editing multimedia based on emotion. However, applying our
general method to scoring, for example, video and slideshows
raises new challenges. An algorithm to generate musical
scores for a visual medium must be able to insert pauses in the
visuals to enable techniques like musical underlays. One ap-
proach may be to add video textures [26] that match the start
and end frames in these pauses, as in Berthouzoz et al.’s [3]
work on editing interview videos.

One bottleneck in applying our approach to more complex
domains is in optimally setting the constraint parameters as
we add new constraints to the optimization. We currently
set these parameters by hand, but if the constraints become
more complicated in the video and slideshow applications, we
could apply Nonlinear Inverse Optimization (NIO) to learn a
parameter assignment from example musical scores, follow-
ing work from O’Donovan et al. [19] and Vollick et al. [30]
in visual layout optimization.

Our system does not account for some characteristics of
voice. In future work, we hope to study how the properties
of voice, e.g., loud and rhythmic vs. soft and timid, impact
the creation of relevant musical scores. Additionally, while
our system uses emotion labels to match the music to speech,
we plan to explore other labeling vocabularies that may pro-
vide new insight in linking music, speech, and visuals.

ACKNOWLEDGMENTS
This work is supported in part by a Google Faculty Research
Award and the Intel Science and Technology Center for Vi-
sual Computing.

REFERENCES
1. Arikan, O., Forsyth, D. A., and O’Brien, J. F. Motion

synthesis from annotations. ACM Transactions on
Graphics (TOG) 22, 3 (2003), 402–408.

2. Audible. http://audible.com, Apr. 2014.

3. Berthouzoz, F., Li, W., and Agrawala, M. Tools for
placing cuts and transitions in interview video. ACM
Transactions on Graphics (TOG) 31, 4 (2012), 67.

4. Calvo, R. A., and D’Mello, S. Affect detection: An
interdisciplinary review of models, methods, and their
applications. Affective Computing, IEEE Transactions
on 1, 1 (2010), 18–37.

5. CastingWords. https://castingwords.com, Apr. 2014.

6. El Ayadi, M., Kamel, M. S., and Karray, F. Survey on
speech emotion recognition: Features, classification
schemes, and databases. Pattern Recognition 44, 3
(2011), 572–587.

7. Ellis, D. P., and Poliner, G. E. Identifying cover songs
with chroma features and dynamic programming beat
tracking. In Acoustics, Speech and Signal Processing,
2007. ICASSP 2007. IEEE International Conference on,
vol. 4, IEEE (2007), IV–1429–IV–1432.

8. Foote, J. Automatic audio segmentation using a measure
of audio novelty. In Multimedia and Expo, 2000. ICME
2000. 2000 IEEE International Conference on, vol. 1,
IEEE (2000), 452–455.

9. Foote, J., Cooper, M., and Girgensohn, A. Creating
music videos using automatic media analysis. In
Proceedings of the tenth ACM international conference
on Multimedia, ACM (2002), 553–560.

10. Jiang, D.-N., Lu, L., Zhang, H.-J., Tao, J.-H., and Cai,
L.-H. Music type classification by spectral contrast
feature. In Multimedia and Expo, 2002. ICME’02.
Proceedings. 2002 IEEE International Conference on,
vol. 1, IEEE (2002), 113–116.

11. Kim, Y. E., Schmidt, E. M., Migneco, R., Morton, B. G.,
Richardson, P., Scott, J., Speck, J. A., and Turnbull, D.
Music emotion recognition: A state of the art review. In
Proc. ISMIR (2010), 255–266.

12. Lasecki, W. S., Murray, K. I., White, S., Miller, R. C.,
and Bigham, J. P. Real-time crowd control of existing
interfaces. In Proceedings of the 24th annual ACM
symposium on User interface software and technology,
ACM (2011), 23–32.

13. Librivox. https://librivox.org, Apr. 2014.

14. Logan, B. Mel frequency cepstral coefficients for music
modeling. In ISMIR (2000).

15. McFee, B., and Ellis, D. P. Learning to segment songs
with ordinal linear discriminant analysis. In Acoustics,
Speech, and Signal Processing, 2014. ICASSP’14.
Proceedings. 2014 IEEE International Conference on,
IEEE (2014).

16. McKee, J. Using music: The kitchen sisters. http:
//transom.org/2014/using-music-the-kitchen-sisters/,
Feb. 2014.

http://audible.com
https://castingwords.com
https://librivox.org
http://transom.org/2014/using-music-the-kitchen-sisters/
http://transom.org/2014/using-music-the-kitchen-sisters/

17. Monteith, K., Francisco, V., Martinez, T., Gervas, P., and
Ventura, D. Automatic generation of
emotionally-targeted soundtracks. In Proceedings of the
Second International Conference on Computational
Creativity (2011), 60–62.

18. Monteith, K., Martinez, T. R., and Ventura, D.
Automatic generation of music for inducing emotive
response. In Proceedings of the First International
Conference on Computational Creativity (2010),
140–149.

19. O’Donovan, P., Agarwala, A., and Hertzmann, A.
Learning layouts for single-page graphic designs.

20. Posner, J., Russell, J. A., and Peterson, B. S. The
circumplex model of affect: An integrative approach to
affective neuroscience, cognitive development, and
psychopathology. Development and psychopathology
17, 03 (2005), 715–734.

21. Rubin, S., Berthouzoz, F., Mysore, G., Li, W., and
Agrawala, M. Underscore: musical underlays for audio
stories. In Proceedings of the 25th annual ACM
symposium on User interface software and technology,
ACM (2012), 359–366.

22. Rubin, S., Berthouzoz, F., Mysore, G. J., Li, W., and
Agrawala, M. Content-based tools for editing audio
stories. In Proceedings of the 26th annual ACM
symposium on User interface software and technology,
ACM (2013), 113–122.

23. Russell, J. A. A circumplex model of affect. Journal of
personality and social psychology 39, 6 (1980), 1161.

24. Schmidt, E. M., and Kim, Y. E. Prediction of
time-varying musical mood distributions from audio. In
ISMIR (2010), 465–470.

25. Schmidt, E. M., and Kim, Y. E. Modeling musical
emotion dynamics with conditional random fields. In
ISMIR (2011), 777–782.

26. Schödl, A., Szeliski, R., Salesin, D. H., and Essa, I.
Video textures. In Proceedings of the 27th annual
conference on Computer graphics and interactive
techniques, ACM Press/Addison-Wesley Publishing Co.
(2000), 489–498.

27. Schwarz, D. The caterpillar system for data-driven
concatenative sound synthesis. In Proceedings of the
COST-G6 Conference on Digital Audio Effects (DAFx)
(2003), 135–140.

28. Schwarz, D., et al. A system for data-driven
concatenative sound synthesis. In Digital Audio Effects
(DAFx) (2000), 97–102.

29. Tauscher, J.-P., Wenger, S., and Magnor, M. A. Audio
resynthesis on the dancefloor: A music structural
approach. In VMV, M. M. Bronstein, J. Favre, and
K. Hormann, Eds., Eurographics Association (2013),
41–48.

30. Vollick, I., Vogel, D., Agrawala, M., and Hertzmann, A.
Specifying label layout style by example. In Proceedings
of the 20th annual ACM symposium on User interface
software and technology, ACM (2007), 221–230.

31. Warriner, A. B., Kuperman, V., and Brysbaert, M.
Norms of valence, arousal, and dominance for 13,915
english lemmas. Behavior research methods 45, 4
(2013), 1191–1207.

32. Webster, T. The podcast consumer 2012.
http://www.edisonresearch.com/home/archives/2012/05/
the-podcast-consumer-2012.php, May 2012.

33. Wenger, S., and Magnor, M. A genetic algorithm for
audio retargeting. In Proceedings of the 20th ACM
international conference on Multimedia, ACM (2012),
705–708.

34. Wenner, S., Bazin, J.-C., Sorkine-Hornung, A., Kim, C.,
and Gross, M. Scalable music: Automatic music
retargeting and synthesis. In Computer Graphics Forum,
vol. 32, Wiley Online Library (2013), 345–354.

35. Willett, W., Ginosar, S., Steinitz, A., Hartmann, B., and
Agrawala, M. Identifying redundancy and exposing
provenance in crowdsourced data analysis. Visualization
and Computer Graphics, IEEE Transactions on 19, 12
(2013), 2198–2206.

36. Yuan, J., and Liberman, M. Speaker identification on the
scotus corpus. Journal of the Acoustical Society of
America 123, 5 (2008), 3878.

37. Zickuhr, K., and Rainie, L. A snapshot of reading in
america in 2013. http://www.pewinternet.org/2014/01/
16/a-snapshot-of-reading-in-america-in-2013/, Jan.
2014.

APPENDIX - EFFICIENT OPTIMIZATION
Because our m and n are small (roughly n = 500 beats in a song, and
roughly m = 1000 beats in the desired output), the entire table can fit in
memory and we can use a dynamic programming algorithm to efficiently find
this sequence of beats. However, music segment length constraints increase
the size of this search space.

If we apply music segment length constraints, our goal is to find the lowest
cost sequence of (beat, segment-length) pairs s′, using T ′ andM ′ in place of
T and M in Equation 1. The search space at each step has grown from size
(n + πmax)m to size (nδmax + πmax)m because we need to consider
the state space of all (beat, segment-length) pairs. The running time of a
normal dynamic programming algorithm increases quadratically with δmax.
However, most of the entries in T ′ are infinity and are never in an optimal
sequence of beats.

We take advantage of these hard constraints to implement an efficient version
of this dynamic programming optimization whose runtime increases linearly
with δmax. We never explicitly compute T ′, which can grow prohibitively
large. We define our new table T ′ in terms of blocks from T (see Figure 6),
so we only store T . We then take advantage of the block structure of T ′ to
limit our search space. For example, if the previous (beat, segment-length)
pair in a path is (bi, dj), and segment length dj is less than δmin, our al-
gorithm only needs to minimize over (beat, segment-length) pairs at length
dj+1 instead of all possible (beat, segment-length) pairs.

Likewise, we do not construct the full tableM ′. Instead, we have a condition
in our algorithm to check if speech bear t = 1, which forces the output
beat/length pair to have length 1. In other cases, we tile δmax copies of
a column in M when our algorithm requires a column of M ′ during the
optimization.

http://www.edisonresearch.com/home/archives/2012/05/the-podcast-consumer-2012.php
http://www.edisonresearch.com/home/archives/2012/05/the-podcast-consumer-2012.php
http://www.pewinternet.org/2014/01/16/a-snapshot-of-reading-in-america-in-2013/
http://www.pewinternet.org/2014/01/16/a-snapshot-of-reading-in-america-in-2013/

	Introduction
	Related work
	Labeling emotions
	Speech Emotion Labels
	Music Emotion Labels

	Score generation algorithm
	Matching costs
	Transition costs
	Structural constraints
	Stylistic constraints
	Setting parameters
	Score synthesis

	Results
	Conclusion and future work
	Acknowledgments
	REFERENCES
	Appendix - Efficient optimization

