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ABSTRACT 
We investigate techniques for visualizing time series data 
and evaluate their effect in value comparison tasks. We 
compare line charts with horizon graphs — a space-efficient 
time series visualization technique — across a range of chart 
sizes, measuring the speed and accuracy of subjects’ 
estimates of value differences between charts. We identify 
transition points at which reducing the chart height results 
in significantly differing drops in estimation accuracy across 
the compared chart types, and we find optimal positions in 
the speed-accuracy tradeoff curve at which viewers 
performed quickly without attendant drops in accuracy. 
Based on these results, we propose approaches for 
increasing data density that optimize graphical perception. 

Author Keywords 
Visualization, graphical perception, time series, line charts, 
horizon graphs. 

ACM Classification Keywords 
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INTRODUCTION 
Time series — sets of values changing over time — are one 
of the most common forms of recorded data. Time-varying 
phenomena are central to many areas of human endeavor 
and analysts often need to simultaneously compare a large 
number of time series. Examples occur in finance (e.g., 
stock prices, exchange rates), science (e.g., temperatures, 
pollution levels, electric potentials), and public policy (e.g., 
crime rates), to name just a few. Accordingly, visualizations 
that improve the speed and accuracy with which human 
analysts can compare and contrast time-varying data are of 
great practical benefit. 

Effective presentation of multiple time series is an instance 
of a larger problem in visualization research: increasing the 
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Figure 1. (a) Filled line chart. Area between data values on 
line and zero is filled in. (b) “Mirrored” chart.  Negative 

values are flipped and colored red, cutting the chart height 
by half. (c) 2-band horizon graph. The chart is divided into 

bands and overlaid, again halving the height. 
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mount of data with which human analysts can effectively 
ork. Toward this aim, researchers and designers have 
evised design guidelines and visualization techniques for 
aking more effective use of display space. Tufte [27] 

dvises designers to maximize data density (data marks per 
hart area) and researchers regularly promote visualization 
echniques (e.g., [12, 22, 25]) for their “space-filling” 
roperties. Such approaches excel at increasing the amount 
f information that can be encoded within a display. 
owever, increased data density does not necessarily imply 

mproved graphical perception for visualization viewers. 

onsider the three time series charts in Figure 1. The first 
raph is a filled line chart — a line chart with the area 
etween the data value on the line and zero filled in. The 
econd graph “mirrors” negative values into the same 
egion as positive values, and it relies on hue to 
ifferentiate between the two. The mirror chart doubles the 
ata density compared to the line chart. The third chart, 
alled a horizon graph [7], further reduces space use by 
ividing the chart into bands and layering the bands to 
reate a nested form. With two layered bands the horizon 
raph doubles the data density yet again.  

uch increases in data density enable designers to display 
ore charts in a fixed area and thereby make it easier for 

iewers to compare data across multiple charts. Yet, 
irroring negative values, dividing the series into bands, 

nd layering the bands may also obscure patterns in the data 



 

and reduce estimation accuracy. Few [7] argues that the 
benefits of increased data density in horizon graphs 
outweigh the drawback. However, it remains unclear how 
mirroring, dividing, and layering time series data affects the 
ability of analysts to quickly and reliably spot trends and 
compare values. Do viewers correctly interpret mirrored 
negative values? Does mental unstacking of layered charts 
interfere with estimation? 

In this paper, we evaluate space-efficient techniques for 
visualizing time series data through a series of controlled 
experiments. We investigate the effects of chart height and 
layering on the speed and accuracy of value comparison 
tasks. We identify transition points at which smaller chart 
heights result in differing drops in estimation accuracy 
across chart types, and we provide guidelines indicating 
which charts work best at which scales. We also note an 
unexpected effect: estimation times decrease as charts get 
smaller, though estimation accuracy also decreases.  

We begin by reviewing related work on both graphical 
perception studies and time series visualization techniques. 
Next, we present two graphical perception experiments of 
time series charts. The first investigates different variants of 
horizon graphs and the second examines both chart type 
and chart size. We then discuss the implications of our 
experimental results and propose guidelines for improving 
graphical perception of space-efficient time series charts. 

GRAPHICAL PERCEPTION 
A volume of prior research has investigated the degree to 
which visual encoding variables such as position, length, 
area, shape, and color facilitate comprehension of data sets. 
Following Cleveland [5], we use the term graphical 
perception to denote the ability of viewers to interpret such 
visual encodings and thereby decode information in graphs. 

Bertin [2] provides the first systematic treatment of visual 
encodings, rank-ordering visual variables according to their 
effectiveness for encoding nominal, ordinal, and quantitative 
data. For example, Bertin posits that spatial position best 
facilitates graphical perception across all data types, while 
color hue ranks highly for nominal (category) data but 
poorly for quantitative data. Bertin bases his rankings on his 
experience as a graphic designer and cartographer. 

Cleveland and McGill [5] place the ranking of visual 
encodings on a more rigorous scientific footing through 
perceptual experiments with human subjects. Subjects were 
shown charts and asked to compare the quantitative values 
of two marks by estimating what percentage the smaller 
value was of the larger. This accuracy measure is then used 
to test and refine the ranking of different visual variables.  

Many other researchers have applied experimental methods 
to graphical perception tasks. Simkin and Hastie [23] test 
value discrimination and estimation for bar, divided bar, 
and pie charts. Spence and Lewandowsky [24] use a two-
alternative discrimination task to investigate perception of 
percentages in bar charts, pie charts, and tables. Multiple 

projects [14, 26] investigate shape discrimination of scatter 
plot symbols. More recently, Wigdor et al. [30] apply the 
approach of Cleveland and McGill to measure how visual 
variable rankings vary due to perspective distortions that 
occur when seated at a table-top display.  

Each of these studies measures how a visual encoding 
variable (i.e., position, size, hue, etc.) affects the accuracy 
and/or response time of estimating values of the underlying 
data. Additional work has built upon these studies to create 
cognitive performance models of graph decoding [8, 15, 
23]. Establishing the effectiveness of visual encodings for 
graphical perception tasks is also vital for the design of 
effective visualizations and the development of automatic 
presentation software [16, 17]. 

Once a designer (or software) selects suitable visual 
encodings for the data variables of interest, one still needs 
to specify the aspect ratio [1, 6] and overall chart size. Size 
is of particular concern when analysts deal with many data 
sets and wish to make comparisons across them. The goal is 
to maximize the amount of data shown without hampering 
graphical perception. Despite a wealth of work on individual 
visual variables and (to a lesser extent) their interactions 
[18], there is relatively little research into the impact of 
chart size and density on graphical perception. Cleveland et 
al. [4] investigate scale effects on correlation perception in 
scatterplots, but vary axis ranges only, not display size. 
Woodruff et al. [31] present methods for promoting constant 
data density in semantic zooming applications, but without 
an empirical evaluation. Lam et al. [13] study the effects of 
low and high resolution displays on visual comparison and 
search tasks. They focus primarily on the cognitive costs of 
switching between display types. Their low- and high-res 
displays use different visual encoding variables (color vs. 
position), confounding analysis of the impact of display 
size. In this paper, we present studies of comparison tasks 
for time series data and measure both accuracy and time 
across various chart size and data density conditions. 

TIME SERIES VISUALIZATION 
Given the ubiquity of time series data, researchers have 
developed myriad approaches to time series visualization. 

Line Charts 
The most common form of time series visualization is the 
line chart, which uses position encodings for both time and 
value. Line charts often encode time as progressing from 
left to right along the horizontal axis, and encode time-
varying values along the vertical axis. Line segments 
connect successive points and the slope of the line encodes 
the rate of change between samples.  

Collections of time series can be overlaid on the same axes 
to facilitate comparison of values. However, placing 
multiple charts in the same space can produce overlapping 
curves that reduce the legibility of individual time-series. A 
popular alternative to overlaying multiple series is to use 
small multiples [27] showing each series in its own chart. 



Multiple charts are typically enumerated vertically and 
aligned horizontally to aid comparison of events and trends. 
Small multiples can be used with sparklines [28] — word-
size data graphics — to form a data-dense display. 

Optimizing Line Chart Aspect Ratios 
Researchers have investigated ways to improve graphical 
perception by optimizing the display of line charts. In his 
book Visualizing Data, Cleveland [6] demonstrates how the 
aspect ratio of a line chart affects trend perception. He 
proposes using an aspect ratio at which the average absolute 
orientation of line segments in the chart is equal to 45 
degrees. This technique, called banking to 45°, aims to 
maximize the discriminability of the orientations of the line 
segments in a chart. Heer and Agrawala [8] extend this 
approach by identifying trends at multiple data scales and 
computing a set of trend-specific aspect ratios. These 
techniques for banking to 45° leave one free size parameter: 
given a fixed height the aspect ratio will determine the 
width, and vice versa. A visualization designer must still 
choose either the height or width of the chart. 

Stacked Time Series 
Stacked graphs are an approach to time series visualization 
that simply stack time series on top of each other. The result 
is a visual summation of time series values that provides an 
aggregate view stratified by individual series. Projects such 
as NameVoyager [29] and sense.us [10] used animated 
stacked graphs to explore demographic data. 

Though seemingly effective for aggregate patterns, stacked 
graphs are awkward for comparing individual series. Visual 
stacking is not an informative aggregation for many data 
types (e.g., temperature) or for negative values. Comparing 
values involves length (stack height) comparisons rather 
than more accurate position judgments [5]. Furthermore, 
viewers often misinterpret the space between curves [5], 
perceiving minimum rather than vertical distance. Byron 
and Wattenberg [3] suggest sorting the stacks to mitigate 
this problem. While sorting can improve perception, it 
cannot eliminate the issue. For these reasons stacked graphs 

are not ideal for comparing individual series and we remove 
them from consideration in the present work. 

Animation 
Directly animating values over time is another means of 
displaying time-series data. Examples include animating 
marks on a map to show time-varying geographic data and 
animating scatterplots to show trends (e.g., Gapminder 
[20]). Researchers have found that animating between time 
slices facilitates value change estimation better than static 
transitions between views [11], but that animation results in 
significantly lower accuracy in analytic tasks compared to 
small multiples of static charts [19]. Given these results, we 
restrict our focus to spatial representations of time. 

Horizon Graphs 
A horizon graph is a relatively new chart type that increases 
the density of time series graphs by dividing and layering 
filled line charts. Saito et al. [21] first developed the 
technique under the name “two-tone pseudo-coloring” and 
Panopticon [7] independently commercialized and branded 
the approach. As illustrated in Figure 2, one can construct a 
horizon graph by first segmenting a line chart along the 
vertical axis into uniformly-sized non-overlapping bands. 
The bands are then layered on top of each other and 
negative values are reflected around the zero point. Hue 
(blue or red) indicates positive or negative values, and 
saturation and/or intensity indicate the band level. Horizon 
graphs reduce the height of a line chart with positive and 
negative values by a factor of 2 × # bands. We refer to this 
particular technique as a mirrored graph due to the 
reflection of negative values around the zero point. 

We have devised an alternative approach which we call an 
offset graph, also shown in Figure 2. The construction is 
similar to mirrored graphs, except that rather than reflecting 
negative values, we offset the negative values such that the 
zero point for the negative values is at the top of the chart. 
In other words, we “slide up” the negative values. As a 
result, slopes for negative values are preserved, but the 
positive and negative values no longer share a common 
zero point. 

Figure 2. Horizon graph construction. A normal line chart is divided into bands defined by uniform value ranges. The bands 
are then layered to reduce the chart height. Negative values can be mirrored or offset into the same space as positive values.

. N  

A . 
Negative values are mirrored
 egative values are offset.
 line chart is divided into layered bands



 

Both mirror and offset horizon graphs show promise for 
increasing the amount of data that can be shown in a fixed 
display space. Both variants make use of a layered position 
encoding of values. Viewers can make position judgments 
to compare absolute differences between values in the same 
band. However, comparing differences across bands or 
making relative (proportional) judgments requires viewers 
to parse the band structure and mentally “unstack” the band 
ranges. In a set of graphical perception experiments, we 
explore how these additional cognitive operations affect the 
speed and accuracy of value estimation. 

APPROACH AND METHODS 
Our objective was to quantify the effects of chart sizing and 
layering on the speed and accuracy of graphical perception. 
To this end we ran two experiments. The goal of the first 
experiment was to determine the impact of band number 
and horizon graph variant (mirrored or offset) on value 
comparisons between horizon graphs. The goal of the 
second experiment was to compare line charts to horizon 
graphs and investigate the effect of chart height on both.   

In both experiments, subjects completed discrimination and 
estimation tasks for points on time series graphs. Since the 
use case of horizon graphs is to compare data across several 
time series plots, we asked subjects to simultaneously view 
two separate graphs and compare a point on one graph to a 
point on the other, as shown in Figure 3. Subjects first 
reported which point represented the greater value and then 
estimated the absolute difference between the two. For each 
trial, we measured the estimation error as the absolute 
difference between a subject’s estimation and the actual 
value difference between comparison points.  

In order to reduce learning effects, we told subjects to take 
as many practice trials as they wished and instructed them 
to practice until they had reached a steady performance 
level. After each practice trial, the experimental software 
showed subjects the correct responses. 

When analyzing the experimental data, we were concerned 
with the impact of outliers due to keying errors and extreme 
responses. Therefore we used 80% trimmed means, a more 
robust statistic, to analyze estimation time and accuracy. 
The statistic is the arithmetic mean of the middle 8 deciles 
of the data. In other words, we drop both the bottom and top 
10% of the data. Cleveland et al. [4, 5] use a similar tactic 
in their work on graphical perception. In our analyses we 
used per-subject trimmed means for each experimental 
condition. 

EXPERIMENT 1: HORIZON GRAPH COMPARISON 
We designed our first experiment to address two questions: 

(a) How does the choice of mirrored or offset horizon 
graph affect estimation time or accuracy? 

(b) How does the number of bands in a horizon chart affect 
estimation time or accuracy? 
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Figure 3. Example trial with a 4-band mirrored graph. 
Each band covers 25 values; the total range is [-100, 100]. 
Subjects reported if T or B was larger, and by how much. 
e hypothesized that offset graphs would result in faster, 
ore accurate comparisons than mirror graphs, as offset 

raphs do not require mentally flipping negative values.   

ith respect to layering, we hypothesized that increasing 
e number of bands would increase estimation time and 

ecrease accuracy across graph variants. We believe that 
creasing the bands increases the difficulty of the task by 

equiring additional perceptual discrimination to identify 
e bands and higher cognitive load to remember the band 

tructure and perform mental arithmetic. 

ethod 
n each trial, subjects viewed two charts, each with a 
osition marked either T or B (Figure 3). Subjects first 
erformed the discrimination task in which they reported 
hether position T or position B represented the greater 
alue. Subjects then performed the estimation task in which 
ey reported the absolute difference between the values at 

ositions T and B. We asked subjects to answer as quickly 
s possible while trying to make estimates accurate to 
ithin 5 values. All charts were 500 pixels wide and 40 
ixels tall. The y-axis of the time-series ranged from -100 
 100 values. We labeled the y-axis of each chart with the 

anges for the first band (e.g., 0-50 or 0-33, see Figure 4).  

e created the time-series by running a symmetric, discrete 
iangle smoothing filter over a random walk. We provide 
e details of our smoothing approach in Appendix A. 

he experiment used a 2 (chart) × 3 (band) within-subjects 
esign. We tested mirrored and offset horizon graphs with 
, 3, and 4 bands (Figure 4). A fully crossed design with 16 
ials per condition resulted in 3×2×16 = 96 trials per 
ubject. As we were interested in observing effects due to 
yering, each trial compared two values in different bands. 
e counterbalanced the trials to cover all pairs of bands. 

Figure 4. Offset horizon graphs with 2, 3, and 4 bands. 



To avoid confusion across conditions, we tested each cell of 
the experiment in a separate block. We preceded each block 
with practice trials in which we showed subjects the correct 
answers after they responded. We designed the experiment 
to test only for effects due to layering and kept the physical 
(pixel) height of the charts constant. We also fixed the 
horizontal location of the comparison points for every trial. 

We deployed the experiment on the web as a Flash applet. 
Eighteen unpaid subjects (13 male, 5 female), participated 
in the study and were recruited through campus mailing 
lists. All were graduate or undergraduate engineering 
students. Each subject used their own machine and browser, 
so there was no control for screen resolution. Since we did 
not vary the chart size, effects due to resolution should be at 
least partially accounted for by the within-subjects design. 

Results 
For all conditions discrimination accuracy averaged 99% or 
higher, so we focus on the results of the estimation task. To 
test for significant effects, we first conducted a Repeated 
Measures MANOVA on the combined (error, time) results. 
The RM-MANOVA found a significant main effect for 
band count (F(4,68) = 11.01, p < 0.001), but did not find an 
effect for chart type (F(2,16) = 0.367, p = 0.699) nor any 
interaction (F(4,68) = 0.211, p = 0.163). We then performed 
univariate analysis of time and error for band counts. 

Estimation Error Increases in 4-Band Condition 
Univariate analysis of the estimation error found a 
significant main effect for band count (F(2,34) = 58.27, p = 
0.013). Figure 5 shows the mean estimation errors by band 
count. Pair-wise comparison of the band counts found that 
estimation accuracy was not significantly different across 
the 2 and 3 band cases (p = 0.768), but that the 4 band case 
was less accurate than both the 2 band (mean difference of 
1.52 units, p = 0.042) and 3 band (mean difference of 1.59 
units, p = 0.026) cases. 

Estimation Time Increases With Band Count 
Univariate analysis of estimation times found a significant 
main effect for band count (F(2,34) = 431.18, p < 0.001). 
Figure 6 shows the mean estimation times by band count. 
Pair-wise comparison of the band counts found significant 
differences between all levels (p < 0.001 in all cases), with 
a mean increase of 2.89 seconds between 2 and 3 bands and 
an increase of 1.91 seconds between 3 and 4 bands. 

Discussion 
We found no significant difference in either estimation time 
or accuracy between chart types and reject our hypothesis 
that offset graphs would provide better performance than 
mirror graphs. Rather, the results suggest that mirrored and 
offset graphs are comparable for value comparison tasks. 

However, the results confirm our hypothesis regarding the 
effects of band count on performance: both estimation time 
and error increased with more bands. Across graph types, 
using 2 or 3 bands had similar error levels (M = 4.12 and M 
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Figure 5. Estimation Error by Band Count. 4-band charts 
have significantly higher error than 2- or 3-band charts. 
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Figure 6. Estimation Time by Band Count. Estimation 
time increases significantly with each additional band. 
 4.04 units, respectively), while 4 bands resulted in 
ignificantly higher estimation error (M = 5.64 units). After 
he experiment, multiple subjects verbally reported that as 
he band count rose they experienced increased difficulty 
dentifying and remembering which band contained a value 
nd that performing mental math became fatiguing. 
ubjects also noted that working with ranges of 33 values in 

he 3-band condition was more difficult than working with 
he ranges in the 2 and 4 band conditions that were 
ultiples of five. Though estimation time was slower with 

 bands than with 2, accuracy did not suffer similarly. 

XPERIMENT 2: CHART SIZE AND LAYERING 
e designed our next experiment to answer the questions: 

a) How do mirroring and layering affect estimation time 
and accuracy compared to line charts? 

b) How does chart size affect estimation time and accuracy? 

n our first experiment we found that mirrored and offset 
raphs had comparable estimation times and accuracies. 
irrored graphs are also used in commercial products, and 

o we removed offset graphs from consideration in this 
xperiment and focused on comparing mirrored graphs to 
illed line charts. The first experiment also found that 2- 
nd 3-band charts had comparable accuracy, but that 3-band 
harts were significantly slower. Consequently, we limited 
he maximum band level to two. Thus, in this experiment, 



 

we compared line charts, mirrored charts without banding, 
and mirrored charts with two bands. We also varied the 
chart height for each type across four scales (Figure 7). 

We hypothesized that at larger chart heights line charts 
would be faster and more accurate than mirror charts both 
with and without banding, and that mirror charts without 
banding would be faster and more accurate than those with 
banding. For the 2-band condition, we expected that 
mentally unstacking the charts would result in slowdowns 
akin to those seen in Experiment 1. In the mirroring-only 
condition, we expected comparisons across positive and 
negative ranges to be slower than comparisons made with 
non-mirrored line charts. 

We also hypothesized that as chart heights decreased, error 
would increase monotonically, but would do so unevenly 
across chart types due to their differing data densities. We 
expected 2-band horizon graphs to result in better accuracy 
than the other chart types once the chart height fell under a 
threshold size, as the “unstacked” version of a horizon 
graph provides more pixels per unit value. Thus we 
predicted the presence of transition points in the height of 
the charts at which charts with higher data density result in 
higher accuracy. A primary goal of the experiment was to 
determine such transition points, should they exist. 

Method 
As in the prior experiment, in every trial subjects viewed 
two charts marked with comparison points and performed 
discrimination and estimation tasks. We instructed subjects 
to answer as quickly as possible while attempting to make 
estimates accurate to within 5 values. All charts were 500 
pixels wide and we varied chart height as a factor.  

The experiment used a 3 (chart) × 4 (size) within-subjects 
design. We tested 3 chart types (normal, 1-band mirrored, 
2-band mirrored) and 4 scale factors (1, 1/2, 1/4, 1/8) where 
scale factor 1 corresponded to a height of 48 pixels. A fully 
crossed design with 10 trials per cell resulted in 4×3×10 = 
120 trials per participant. We counterbalanced the trials for 
value differences between points. In each trial the 

comparison points were located in different bands. We 
counterbalanced the trials to cover all pairs of bands. 

We recruited thirty paid subjects (17 male, 13 female) via a 
research participation pool. Subjects were undergraduate 
students from a variety of majors. All subjects performed 
the experiment on a 14.1” LCD monitor at 1024 × 768 pixel 
resolution. At scale factor 1, the physical chart size was 
13.9 × 1.35 centimeters. Subjects sat normally at a desk and 
we did not constrain their movement. 

We subsequently ran a follow-up experiment to further test 
performance at extremely small sizes and investigate 
accuracy transitions between the 1- and 2-band conditions. 
The follow-up used a 2 (chart) × 3 (size) within-subjects 
design, comparing the 1- and 2-band mirrored conditions 
and scale factors of (1/8, 1/12, 1/24). At the smallest scale, 
the chart height was only 48/24 = 2 pixels tall. We recruited 
eight paid subjects (6 male, 2 female) via campus e-mail 
lists. All subjects were graduate engineering students and 
used a 14.1” LCD monitor at 1024 × 768 pixel resolution. 
Six subjects had previously participated in Experiment 1. 

Results 
For all conditions, discrimination accuracy averaged 98% 
or higher for the main experiment and 96% or higher for the 
follow-up, so we focus on the results of estimation tasks. In 
the main experiment, a RM-MANOVA for (error, time) 
found significant effects for chart type (F(4,116) = 11.086, 
p < 0.001) and chart height (F(6,174) =  7.099, p < 0.001), 
but no interaction effect (F(12,348) = 0.921, p = 0.526). In 
the follow-up experiment, a RM-MANOVA similarly 
found significant effects for chart type (F(2,6) = 21.630, p = 
0.002) and height (F(4,28) = 5.555, p = 0.002), but no 
interaction effect (F(4,28) = 0.689, p = 0.605). 

Estimation Error Increases as Chart Height Decreases 
Univariate analysis of estimation error found significant 
effects for both chart type (F(2,58) =  7.550, p = 0.001) and 
chart height (F(3,87) = 12.369, p < 0.001). Pair-wise 
comparisons showed a disadvantage for line charts against 
both 1- and 2-band mirror charts (p < 0.001 and p = 0.015, 

Figure 7. Chart Type and Scale Conditions in Experiment 2. We crossed 3 chart types and 4 chart heights. The diagonally 
adjacent cells indicated by arrows and shading have the same virtual resolution: the un-mirrored, un-layered size of the chart. 
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igure 8. Estimation Error by Chart Type and Height. The 
2-band mirror chart crosses the 1-band case at a chart 

Figure 9. Estimation Error by Chart Type and Virtual 
Resolution. Error levels hold relatively stable at high virtual 
espectively). One-band mirror charts had lower error than 
ine charts at all scale factors (Figure 8). Our follow-up 
xperiment found significant effects for chart type (F(1,7)  
 23.189, p = 0.002) and height (F(2,14) = 44.283, p < 
.001), with error increasing as chart height decreases. 

s shown in Figure 8, accuracy decreased at smaller chart 
eights. In the main experiment, this effect was most 
ronounced for line charts and 1-band mirror charts. 
stimation error remained steady for scale factors of 1 and 
/2. At smaller sizes, both chart types had monotonically 
ncreasing error. Estimation error for 2-band mirror charts 
tayed relatively stable, equaling or beating the line and 1-
and mirror charts at scales of 1/4 (12 pixels) and lower.  

stimation Error Increases with Virtual Resolution 
he preceding analysis indicates a crossover point at which 
-band scale charts begin to outperform other chart types in 
erms of estimation accuracy. We hypothesized that increases 
n error are attributable to a chart’s virtual resolution. We 
efine virtual resolution as the un-mirrored, un-layered 
eight of a chart. The virtual resolution for a line chart is 
imply its height. For a 1-band mirror chart it is twice the 
eight. For a 2-band mirror chart it is four times the height. 

igure 9 plots the estimation accuracies of the chart types 
y their virtual resolutions. As we successively decreased 
hart height by a factor of two, we plotted virtual resolution 
n a base 2 logarithmic scale. For large virtual resolutions, 
he plot shows plateaus where the error level is stable. At 
ower resolutions, the error rate rises in a similar manner 
cross charts. While the 2-band mirror chart has a greater 
aseline error rate, it also has a greater virtual resolution at 
 given chart height. It accordingly maintains the baseline 
rror level for chart heights at which performance degrades 
n other chart types. At resolutions below 24 pixels, error 
ppears to increase linearly as the virtual resolution halves. 

To test this observation, we ran a linear regression of error 
and virtual resolution at resolutions of 24 pixels and below. 
The regression fits with R2 = 0.986 and a slope of -4.1 units 
/ log2 pixel, indicating a linear increase. 

We ran our eight subject follow-up experiment to see if our 
hypothesis would hold at smaller scales. We expected to 
find that the 2-band chart degrades in performance at the 
same virtual resolutions at which the other charts degrade. 
The results are shown in the bottom left corner of Figure 9. 
The baseline error rate was substantially less in our follow-
up; we attribute the disparity to our different subject pools. 
(Follow-up subjects were engineering grad students, and 
many participated in Experiment 1. The base error rate in 
the follow-up is closer to that of Experiment 1.) We found 
that 1- and 2-band charts had nearly identical error levels at 
matching virtual resolution values. We also found that the 
errors increased at rates similar to the main experiment. 
Linear regression of error and virtual resolution fits with R2 
= 0.980 and a slope of -3.5 units / log2 pixel, again 
indicating a linear increase in error as chart heights halve. 

Layering Increases Estimation Time, Mirroring Does Not 
Univariate analysis of estimation time found a significant 
effect for chart type (F(2,58) = 16.686, p < 0.001). Two-
band mirror charts were slower than normal time series by 
2.05 sec on average (p < 0.001) and 1-band mirror charts by 
1.91 on average sec (p < 0.001). The result is consistent 
with Experiment 1, where increasing the band count slowed 
estimation. We found no significant difference between 1-
band mirror charts and line charts (p = 0.632). In our 
follow-up experiment, we found 1-band charts to be faster 
than 2-band charts by 0.85 sec (F(1,7) = 10.911, p = 0.013). 

Estimation Time Decreases with Chart Height 
Analysis of estimation times also found an effect for chart 
height (F(3,87) =  5.139, p = 0.003). As the chart height 

height of 12 pixels (scale factor 1/4). resolutions, but increase linearly at smaller resolutions. 



 

decreases, so does the estimation time. As plotted in Figure 
10, estimation time is affected primarily by the chart height 
and not the virtual resolution of the graph, since an 
estimation time vs. virtual resolution plot would require the 
2-band line to shift right two bins and the 1-band line to 
shift right one bin. At scale 1/2 (24 pixels), estimation times 
were faster than for larger charts by an average 1.1 sec. 
Interestingly, error increased less than 2 units across all 
chart types between scale 1 and scale 1/2. In our follow-up 
we found no effect on estimation time for the smaller scale 
charts (F(2,14) =  1.525, p = 0.252). 

Discussion 
Our first hypothesis was that at large chart sizes, line charts 
would outperform both mirror chart types, and that 1-band 
mirror charts would outperform the 2-band case. The 
hypothesis was only partially confirmed. At the two largest 
chart sizes, 1-band charts were faster and more accurate 
than 2-band charts. Contrary to our hypothesis, 1-band 
mirror charts exhibited equal or better speed and accuracy 
than normal line charts that were twice as tall. 

We also hypothesized that estimation error would increase 
as chart size decreased, and would do so unevenly across 
chart types. This hypothesis was confirmed. We found that 
at scale factor 1/4 the error rate was comparable across 
charts and that 2-band mirror charts provided better 
accuracy at lower sizes. We found that virtual resolution is 
a good predictor of error for scale factor 1/4 and below. At 
the larger sizes, error appears to stabilize at a baseline rate, 
though more study may be needed to confirm the 
stabilization at even larger sizes. 

Our follow-up experiment investigated chart heights as 
small as 2 pixels, at which point the information conveyed 
by position encoding is extremely coarse. Subjects reported 
relying on color to form estimates at this small size. Note 
that we rendered the charts using anti-aliasing, so each pixel 

could still encode a range of values. Thus, our results may 
characterize the transition from a positional encoding to a 
color encoding such as those used in pixel-oriented time 
series visualization techniques [12, 13]. 

We also found that subjects made estimates faster as chart 
size decreased. Interestingly, this result appears to depend 
on the physical chart height rather than virtual resolution. 
Two subjects verbally reported that they felt they could 
achieve more accurate results with the larger charts, and so 
spent more time to get that accurate result. It is possible that 
subjects form accuracy expectations based on the perceived 
chart size and allocate time accordingly.  

The data also show that in some cases smaller charts led to 
faster estimation times but equivalent error levels. For all 
three chart types, scale factor 1/2 (24 pixels) resulted in 
faster but comparably accurate performance over charts 
twice as large. As detailed in the next section, this result 
suggests optimal points for setting a chart’s default height, 
even when screen space is not under contention. 

DESIGN IMPLICATIONS 
Based on our experimental results, we offer the following 
design implications for optimizing time series visualizations. 

Mirroring Does Not Hamper Graphical Perception 
One unexpected result was that mirroring a chart—flipping 
the negative values around zero—neither slowed estimation 
time nor hurt estimation accuracy. As mirroring cuts the 
size of the chart in half without any observed downside, we 
advocate its use when space constraints warrant, so long as 
the viewer knows how to interpret the chart.  

Layered Bands Are Beneficial As Chart Size Decreases 
We found that dividing a chart into layered bands reliably 
increased estimation time and increased estimation error at 
constant chart heights. However, we also found that 2-band 
mirrored charts led to better estimation accuracies for chart 
heights less than 24 pixels (6.8 mm on our displays). For 
larger chart sizes, we advise scaling 1-band mirrored charts. 
For smaller sizes, we advise adding layered bands.  

We discourage the use of 4 or more bands, as this resulted 
in increased time and error, and subjects complained that 
interpreting 4-band charts was difficult and tiring. The case 
for 3-band charts is less clear: at a chart height of 48 pixels 
estimation accuracy was comparable to the 2-band case, but 
estimation time was slower. Our virtual resolution model 
predicts benefits for 3-band charts at heights under six 
pixels, but more research is needed to verify the prediction. 
As a result, we recommend using 2-band charts for charts 
heights of 6 pixels (1.7 mm) or more. 

Optimal Chart Sizing 
Our results show that estimation error stayed stable at larger 
chart sizes, but that smaller sizes led to faster estimations. 
Therefore, for each chart type there is at least one size that 
minimized estimation time while preserving accuracy. For 

Figure 10. Estimation Time by Chart Type and Height. 
Line and 1-band mirror charts result in similar estimation 
times. Both are significantly faster than 2-band charts. 



both normal line charts and 1-band mirror charts, we found 
a chart height of 24 pixels (6.8 mm on our 14.1” 1024 × 
768 pixel displays) to be optimal. For 2-band line charts, we 
found optima at 12 and 6 pixels (3.4 and 1.7 mm) – 

performance is about equal at both these sizes. Thus these 
sizes may be used to optimize graphical perception even 
when there are no space constraints. However, our subjects 
were instructed to make estimates accurate within 5 values. 
Future work is needed to ascertain if similar results occur 
under different target accuracies. 

LIMITATIONS AND FUTURE WORK 
One limitation of the present work is that we only measured 
the results of value comparison tasks. Graphical perception 
of time series typically involves observing rates of change 
in addition to comparing values. One reason we focused on 
value comparison is that graphical perception of rates of 
change has been studied previously [1, 5] and techniques 
for determining aspect ratios optimized to aid trend 
perception already exist [6, 8]. However, it is likely that 
value estimation is affected by local context within a chart, 
including line slopes. As we randomized the slope across all 
comparison points, we believe our results are robust to any 
contextual effects. Still, future work is needed to determine 
the nature and extent of any such effects. 

Another limitation of our study is that we only varied chart 
heights and did not investigate the effects of chart width or 
of distance between comparison points. As time-varying 
data is encoded along the vertical dimension, we assumed 
that chart height would be the primary determinant of 
estimation performance. Furthermore, applying aspect ratio 
optimization [6, 8] to time series leaves only one free size 
parameter. Thus, determining an optimal aspect ratio and 
height will fix the total chart size. However, a large vertical 
or horizontal distance between points could adversely affect 
both estimation accuracy and time. We leave studies of the 
effects of distance between comparison points to future 
work. We also note that while we varied chart heights, we 
did not vary physical pixel sizes. Determining whether our 
results remain valid for higher resolution displays (i.e., 
smaller pixels) is also left to future work.  

In our experiments we discovered that accuracy stabilized 
at the larger chart heights we investigated. However, we did 
not determine if those accuracy rates would hold at still 
larger chart sizes. Furthermore, for larger charts we would 
also expect additional axis labels, tick marks, and gridlines. 
We suspect that adding such marks reduces estimation error 
in larger charts. A potentially fruitful direction for future 
work is to evaluate if our optimal height results also imply 
an optimal physical spacing for tick marks and gridlines. 

Another open question is where dividing and layering fits 
within the rank-ordering of visual variables for depicting 
quantitative data [2, 5, 16]. Virtual resolutions being equal, 
our results show that a pure position encoding is preferable 
to layering. More specifically, we found that unlayered 
charts are faster and at larger sizes more accurate than 

layered charts. Layered charts were more accurate than 2 
pixel tall mirror charts that relied primarily on saturation to 
encode values. Thus, for encoding quantitative values, 
layering should be preferred over using a color encoding 
(c.f., [13]). Future investigation may determine how 
layering ranks against other visual variables. Our work 
shows promise for layering, at least for charts that can be 
layered without suffering from occlusion. For example, bar 
charts might be layered with similar results. Although other 
chart types such as scatter plots could also be layered, it is 
doubtful that such an approach would improve graphical 
perception. 

Finally, while our results provide guidance for optimizing 
the display of time series data, we stop short of devising a 
perceptual and cognitive model that more fully explains our 
observations. Our results could be used to corroborate and 
extend existing cognitive models of graph comprehension 
[8, 15, 23]. Future work, including eye-tracking studies, 
might provide additional insight into both our own results 
and other issues in graphical perception. 
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APPENDIX A: CHART GENERATION 
In each trial of our experiment the subject had to estimate 
the magnitude difference between the y-coordinate of two 
query points, T and B (Figure 3). Given a signed offset 
distance d between the query points as input, we generated 
a pair of charts as follows. First, we randomly chose the y-
value for T and added the offset d to it to set the y-value for 
B. The x-coordinates for T and B were set a priori and fixed 
for all charts in the experiment. Once the query point T or B 
was set, we used a random walk, with a step size of +/- 1 in 
x and y, to fill in the remaining values in the chart.  To 
ensure that the chart was band-limited we then convolved 
the chart with a 5-tap triangle filter with parameters [0.11 
0.22 0.33 0.22 0.11]. Because the smoothing process could 
shift the position of the query point, we translated the y-
values in a neighborhood of 20 points about the query 
points to maintain the necessary offset distance between T 
and B. To further smooth the chart we repeated the 
convolution and translation process but using a symmetric 
3-tap triangle filter with parameters [0.25 0.5 0.25]. The 
key features of our approach are that the offset distance 
between the query points were fixed, the charts appeared 
randomly different from trial to trial, and the charts did not 
contain high-frequencies because of the smoothing.  


