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ABSTRACT

We present MotionMontage, a system for recording multi-
ple motion takes of a rigid virtual object and compositing
them together into a montage. Our system incorporates a
Kinect-based performance capture setup that allows anima-
tors to create 3D animations by tracking the motion of a rigid
physical object and mapping it in realtime onto a virtual ob-
ject. The animator then temporally annotates the best parts
of each take. MotionMontage merges the annotated motions
into a single composite montage using a combination of dy-
namic time warping and optimization of a Semi-Markov Con-
ditional Random Field. Our system also supports the creation
of layered animations in which multiple objects are moving
at the same time. To aid the animator in coordinating the mo-
tions of the objects we provide spatial markers which indicate
the positions of previously recorded objects at user-specified
points in time. We perform a user study to evaluate the per-
ceived quality of the montages created with our system and
find that viewers (including both the original animators and
new viewers) generally prefer the animation montage to any
individual take.
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INTRODUCTION

It is common practice in the movie industry to capture mul-
tiple takes of the same shot. Such re-takes allow the direc-
tor to capture variations in the dialogue, and try out different
positioning of the actors and camera angles. In performance-
based 3D animation, a director may ask the animator to per-
form multiple takes in order to test different styles of motion
(e.g. a more energetic performance versus a somber perfor-
mance) and to find the most appropriate style for the shot.
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Figure 1. A user working with the MotionMontage system to record
multiple takes of a 3D animation.

In film, there are instances of a single shot requiring many
takes; for example, one shot in the movie “The Shining” was
reported to have needed 148 takes before the director, Stanley
Kubrick, was satisfied [13].

Our work explores the concept of multiple takes for
performance-based 3D animation. We focus on novice users
who do not have any experience with high-end animation
editing software such as Maya. We leverage 3D Puppetry [9]
and DuploTrack [8], two recent Kinect-based performance
capture systems that allow novices to easily create 3D anima-
tions by tracking the motions of rigid physical toys and map-
ping those motions in real-time onto virtual objects. How-
ever, one significant drawback of all such performance-based
3D animation systems is that they require the user to discard
a take if any aspect of the motion was incorrect or undesired
and then repeat the motion from scratch, hoping the next one
will be just right. Yet, each take may contain some parts that
are better than others even if no complete take is satisfac-
tory. Since most novice users have little prior experience in
creating animated stories, they may require a large number
of takes to reach a desired animation, leading to fatigue and
frustration in generating such re-takes.



We present MotionMontage, a system that allows novice ani-
mators to combine multiple takes into a desired result, called
the montage. The animator records the motion of one object
at a time, as shown in Figure 1. The takes may vary in style or
trajectory of the motion. Our system allows the animator to
annotate each take continuously through time based on their
like or dislike of various parts of the take. The system then
merges the best parts of each annotated take into a single com-
posite montage using a combination of dynamic time warp-
ing and optimization of a Semi-Markov Conditional Random
Field. The user can repeat the process for the same object to
further refine the montage or to animate other objects.

Our system also allows animators to create layered anima-
tions in which multiple objects are moving at the same time.
Although the animator must perform the motion of one object
at a time, our system plays back all of the motions together.
To aid the animator in coordinating the motions of the dif-
ferent objects, we provide spatial markers indicating the po-
sitions of previously recorded objects at user-specified points
in time. The animator can place multiple markers for one or
more objects to help plan the motion of the current object.

The key contribution of the paper is our technique for com-
bining multiple takes of an object’s motion into a motion
montage using a simple annotation-based interface. We re-
port on a formal user study that validates that the animation
montage is generally perceived to be better than any individ-
ual take, both from the point of view of lay users who created
the animations, as well as others who only viewed the anima-
tions.

RELATED WORK
Our system for combining multiple takes of performance-
based 3D animations builds on several areas of prior work.

Performance-Based Animation Capture

In film, high-end motion capture systems are often used to
capture performance-based animations. These systems are
designed to accurately track human bodies or objects, but
usually require complex hardware setups and/or attaching
markers to the tracked objects [21, 6]. More recently, re-
searchers have begun developing low-cost marker-less per-
formance capture systems that work with video cameras or
3D cameras. Video puppetry [4] tracks the motions of pa-
per cutouts using an off-the-shelf video camera and allows
users to create 2.5D animations. Researchers have similarly
used the Kinect 3D camera to track the human body [20],
hands [20], as well as rigid physical objects [9, 8]. How-
ever all these methods require the user to repeatedly record
motion takes till she is happy with one take. However the
user may like different parts of different takes and there is
no easy mechanism in these systems to intelligently combine
takes based on user feedback. Our MotionMontage system
presents a simple interface to annotate the recorded takes and
uses a novel algorithm to combine these takes into the mon-
tage. Our system leverages the 3D object tracking algorithm
of DuploTrack [8] as well as the performance-capture inter-
face of 3D Puppetry [9] to record the takes.

Motion Synthesis and Blending

There have been several efforts to synthesize new motions
by applying constraints or leveraging sets of motion capture
recordings. Gleicher et al. [7] propose a formulation for syn-
thesizing a motion sequence respecting a set of spacetime
constraints. They pose it as a global optimization over a high-
dimensional motion space. The optimization is non-convex
and grows in complexity as the number of constraints in-
creases. Our problem could also be modeled as this kind of
global optimization with the spatial constraints coming from
users’ annotations and temporal constraints coming from an
alignment method like Dynamic Time Warping [14]. Instead,
we exploit the structure of our problem to propose a much
simpler solution which leads to a one-dimensional optimiza-
tion that can be solved in realtime. Further, unlike Gleicher et
al. [7], our method is guaranteed to closely follow the original
takes and the annotations.

Arikan et al. [3] use a database of motion sequences (captured
using standard motion capture systems) to synthesize a new
motion sequence. Each frame in the motion sequences is first
tagged with actions like walk, run, jump etc. The user then
specifies the desired action tags on a timeline and the system
computes an optimal sequence of motion frames satisfying
the tags. Their algorithm is based on representing the motion
frames as a complete graph and then finding an optimal path
in that graph using dynamic programming [12]. In our case,
the motion sequences are semantically bound to a script and
also vary in length of time. A complete motion graph would
include a lot of transitions that violate the temporal and se-
mantic structure of the sequences. Instead, we use temporal
warping to align all the motion takes and then work with a
graph that respects the temporal and semantic ordering of the
frames. Further, the montage in our graph is non-Markovian
in contrast to Arikan et al. due to an additional path con-
straint that we found necessary for editing the takes. Hence
we propose a different solution in this paper based on per-
forming an inference in a semi-Markov Conditional Random
Field (CRF). We also visualize and describe these differences
in the supplementary video.

Kovar et al. [11] look at the problem of blending multiple,
annotated, human motion capture clips. They propose tech-
niques for temporally and spatially aligning the clips and then
apply a per-frame weighted average to blend them. We have
found that taking weighted averages of existing takes gives
undesirable results. For example, if a user happens to give
high weight to two distinct motions that overlap in time, then
the average at their overlap will not resemble either of the
original motions. Instead, we focus on piecing together sec-
tions from the original takes, respecting user annotations to
the extent possible, while finding good places to transition
between the takes. Our work also differs in how we warp the
user’s annotations and unwarp the montage at the end. Our
approach better preserves the original intent of the user and
the original speeds of the recordings.

Interactive Compositing of Photos and Videos
Our work on compositing multiple motion takes is inspired by
Agarwala et al.’s [2] Interactive Digital Photomontage sys-
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Figure 2. System functionality. The user chooses a virtual object from a pre-loaded database and records one or more motion takes for the object. He
then annotates the takes and the system combines them into a montage, which can be longer than any of the original takes. The process can be repeated

for subsequent objects.

tem for combining the best parts of a set of photographs.
In that work, the user roughly annotates the parts of each
photograph that are desired in the composite and the system
uses a combination of graph-cut optimization [5] with gradi-
ent domain blending [15] to automatically generate the com-
posite image. Ruegg et al.’s [17] DuctTake system extends
the approach of Agarwala et al. [2] to compositing multiple
videos. Our system similarly allows users to annotate the de-
sired parts of each motion take, and automatically combines
them into a motion montage. Since we are working with 3D
motion data rather than images or video we use very different
methods for optimizing the final composite.

SYSTEM SETUP AND INTERACTION

Our MotionMontage system allows the user to record 3D ani-
mations involving multiple objects, one at a time. We first dis-
cuss animating a single object, and then discuss differences in
this procedure for animating multiple objects.

Figure 2 gives an overview of the system. The user first
chooses a virtual object from a pre-loaded database. He then
records one or more takes for the object, based on a script,
by moving a physical object, called a proxy, in the 3D space
in front of him. The tracked motion of the proxy is mapped
in realtime onto a virtual object on a screen. The next step
is to annotate each take. The user marks the parts of the take
he likes and those he dislikes. The figure shows three discrete
levels of annotations although there is a continuous scale. Af-
ter annotating the takes, the system combines the best parts of
each one into a montage animation.

The user can then repeat the process to animate additional
virtual objects, and the system combines the montages of all
objects to create the final animation. In the remainder of this
section, we describe the details of the hardware setup and
the various interactions described above. The supplementary
video shows the effects of all these interactions in detail.

Hardware Setup

Figure 1 shows the hardware setup of our system. The inter-
action area is divided into two regions - a Play area and a Like
box. The user acts out the story using the proxy in the Play
area. The Like box is used as a slider by moving a green block
inside it. The screen in front of the user shows the rendered
virtual object in the tracked pose of the proxy. This hardware
setup is based on Gupta et al.’s [8] DuploTrack system.

Setting up the Scene, Proxy and Virtual Objects

The user first chooses a virtual background scene. The back-
ground scenes are created by placing freely available 3D ob-
jects, downloaded from the internet. The play area on the
table is mapped to an area in the background scene as in 3D

Puppetry [9].

Unlike in 3D Puppetry, the user can use any rigid physical ob-
ject as the proxy, as long as a model of the proxy is available.
In our system, the user constructs the proxy with Duplo®
blocks using the DuploTrack system [8], which then provides
the model of the proxy to be used in tracking. The proxy
can then be used to control the motion of a selected virtual
object again chosen from a set of rigid virtual objects down-
loaded from online 3D databases. When recording a take, the
system uses the color+depth image feed from a Kinect cam-
era, segments it to remove the irrelevant pixels and performs
real-time pose tracking of the proxy. The tracked motion is
mapped one-to-one to the virtual object and rendered on the
screen in front of the user in realtime. We have adapted the
segmentation and tracking algorithms from DuploTrack [8].
There is a slight lag in the tracking currently, as seen in the
supplementary video. In the future, this could be addressed
by using a faster tracking algorithm, such as the one devel-
oped for 3D Puppetry [9], which uses both image features
and 3D geometry to perform realtime object tracking.

Recording a Take

The user starts recording a take by pressing a key on the key-
board. He then acts out the motion with the proxy and ends
the recording by pressing a key again. The user can record
multiple takes with this process. These takes may vary in
length. However, the assumption is that all the takes follow
the same template story, and vary primarily in motion style.
Arrow keys allow the user to scroll through the takes and re-
view them.

Annotating the Takes

The user annotates each take to indicate their level of satis-
faction with each part of each take. Annotations are made in
realtime — while the take is playing the user moves a green
Duplo block left or right in the Like box to indicate the de-
gree of like or dislike for the corresponding part of the take.
The Like box acts as a slider, ranging from —5 to +5, with the
block serving as the thumb of the slider. We track the posi-
tion of the block using the same tracking algorithm as for the
proxy. The user annotates the whole take in one play-through.
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Figure 3. Annotating a take. While the take plays on the screen, the user
moves a green block in the Like box (top right). The system localizes
the position of the block and annotates the take with the corresponding
slider value. Disliked and liked parts of the timeline are illustrated with
red and green, respectively. The degree of like or dislike, is reflected by
the brightness of the color.

Figure 3 shows a screenshot of the user annotating a take with
this process.

When annotating a take, the user sees a motion, judges it,
and then physically moves the green Duplo block. There is
a natural time delay between the actual time of the motion
and the placement of the green block in its intended position.
To compensate for this lag, we shift the recorded annotations
back in time by 0.3 seconds. This value is based on the aver-
age human reaction time [1] plus an empirically added delay
for block movement. We found that this value worked well in
practice for all our users.

The user repeats the annotation process for all the takes that
he wants to composite for the montage. He then triggers the
montage creation by pressing a key and the system generates
the montage in realtime.

COMPOSITING THE TAKES INTO THE MONTAGE

In this section, we discuss the formulation for merging m an-
notated motion takes into a single motion recording called a
montage. We denote the I*" take as 7} and its annotation as
a function a; where T;(¢) and a;(t) give the pose and anno-
tation values respectively, at frame ¢. The like-dislike anno-
tation values lie on a continuous scale of —5 (dislike) to 5
(like). We further decompose the pose T;(t) into a rotation
quaternion and a translation vector, 7;(t) = (q;(¢), z;(t)).

The goal is to create a montage that utilizes the best parts of
each take without introducing noticeable artifacts due to fre-
quent switching between takes. The latter constraints mean
we should transition between takes where the different takes
agree as much as possible, and we should also avoid fre-
quently flipping from one take to another.

To determine the best set of switching points from one take
to another, we first align all the takes in time. We temporally
warp all the takes independently to match a single reference
timeline. After warping, specific segments of each take are
selected to create the montage on this timeline. Finally, we
unwarp the timeline so that each segment will be played at

Source frames for take 7T}

Reference frames (%)

Figure 4. Dynamic Time Warping (DTW) finds an optimal warp func-
tion, w;(t), from the frames of the reference take, 7 (x-axis), to the
frames in the source take, 7; (y-axis). The values at each point in the
quadrant represent the match of pose between the corresponding frames
in the reference and the source takes. Darker color shows better pose
match. The yellow path is optimal warp function computed by the algo-
rithm while the green path shows the naive linear-scaling-based warp.

its original speed, and then blend between adjacent segments
over short intervals to create the final montage. We note that
unwarping the timeline is important to respect the user’s in-
tentions with respect to timing.

Temporal Warp of the Takes

We use a Dynamic Time Warping (DTW) [14] algorithm
to align all the takes in time. For simplicity, we arbitrarily
choose the first take as the reference, and warp all other takes
to its timeline.

Formally, we consider take T to be the reference take and
then compute a monotonically increasing function w; from
the reference take’s timeline to the timeline of each source
take 7;. We can write each warp function w; as a mapping,

wi AL [Ty = {1 TR} M
which is monotonically increasing,
t1 >t = wl(tl) > wl(tg) 2)

and matches the start and end frames of reference and source,
wi(1) =1 and wy(||T1]]) = |[T3]| 3

We solve for an optimal w; by minimizing the cost of bring-
ing each reference frame into alignment with a source frame
summed over all frames ¢:

w = argn&)iln Z Craten (T1(t), Ti(wi(t)) ) “)
t

The matching cost Cy . measures the difference between
two poses. For two poses A1 = (¢q1, 1) and Az = (g2, x2):

Chaten (A1, A2) = [|q1 — @2l|2 + M|z1 — 22l (5)

We set A to 2.5, based on experimentation.

Figure 4 shows a visualization of the matching cost and the
optimal w;. We use the standard DTW algorithm [14] to solve
this problem. Graphically, it finds a monotonically increasing



path that tries to stay in the darker regions of the diagram in
Figure 4. The resulting path, w; (t) lets us warp 7;(t) to a new
warped take, T} (t) = Tj(w;(t)) that follows the reference
timeline.

We also need to warp the respective annotations to the refer-
ence timeline. This requires special care. Consider the case
where w (t) is constant for a duration of N,,, () frames. This
corresponds to a horizontal, flat region of the curve in Fig-
ure 4. In this case, the annotation a; (w;(t)), which applies to
only one frame in the source take, will have an influence over
Ny, () frames in the warped space. As a result, during later
optimization over the warped timeline (described in the next
section), this annotation will have extra influence because it
is artificially sustained by the warp. In this case, we should
down-weight the annotation by 1/N,,, () for each frame in
the set that maps to w (t).

Conversely, where the slope of w;(t) is steep, the warped
sequence can skip from one source frame to a distant next
source frame when moving from frame ¢ to ¢ + 1 in the ref-
erence timeline and thereby skip past all source annotations
in between. To ensure that the annotations on such skipped
influence on the final result we add all of their influences to-
gether and store the sum as the warped annotation.

Formally, we compute the warped annotations as follows:

wy (t4+1)—1
S at), ifw(t+1)—w(t)>0
t'=w;(t) (6)

N a(w(t), ifw(t+1) = w(t)

Another way of thinking about this is that we are (intelli-
gently) scaling the annotation values so that the summation
of the warped annotations a;(t) over ||} || frames of the ref-
erence timeline is the same as the summation of the unwarped
annotations q,(t) over ||T;|| frames of the (unwarped) source
timeline. We have found this scaling to significantly improve
the quality of results over naively warping the annotation
functions.

Merging the Takes

We now have m warped, annotated takes Tl’ ’s, each com-
prised of n = ||T}]| frames. We first compute a warped mon-
tage, M’, such that each frame of the montage comes from
a corresponding frame in one of the m takes. M’ can be de-
noted in shorthand as {l1, ...l } where l; € {1,2...m} is the
take selected for time ¢ € {1,2...n}. (Strictly speaking, the
montage is a sequence of poses {7} (1),7},(2),...T; (n)}.)
We now define the overall cost function for a montage:

n n—1
CT(M/) = ch(t7lt) +MZCs(f7lt,lt+1) @)
t=1 t=1

The total cost Cr is the sum of two terms: a data cost, Cy,
and a smoothness cost Cs. We set ;1 = 100 based on experi-
mentation.

Cy is the cost of frame ¢ coming from take /; and is based
on the annotation functions, where a higher annotation rating
translates to lower cost. Specifically, for a given frame ¢ and
take [ we define this cost to be:

Ca(t, 1) = —aj(t) ®)

The smoothness cost C favors temporal coherence by dis-
couraging transitions between takes in regions where their
poses are dissimilar. At frame ¢, it is computed by considering
time windows in the takes T;, and T}, ,,, centered around the
unwarped location of ¢, and summing up the cost of matching
the poses in those windows. Specifically, given frame ¢ and
given two takes [ and k, we define the cost to be:

Cs(t, k) =

Z Cmatch(n(wl(t) +h); Tk(wk(t+1) +h7 1)) (9)
hew

Note that we are comparing poses of the unwarped takes, as
the final composite will be comprised of sequences of un-
warped takes between which we want smooth transitions. We
set the window W to the range [—7, ..., 7], suitably truncated
when the window goes out of bounds in either of the two
takes. Clatcn 18 the same cost function as in Equation 5.
Here we choose A = 0.8 based on experimentation.

We can solve for the optimal warped montage, M’*, by min-
imizing the total cost:

M"™ = argral}/nCT(M’) (10)

This formulation is equivalent to an inference problem over
a Markov chain, which can be solved exactly using the
dynamic-programming-based Max-Sum algorithm [10].

However, we have found that optimizing this objective, de-
spite the smoothness term, can occasionally lead to sections
of the montage that have rapid, frequent flipping between an-
notated takes. To address this problem, we impose a mini-
mum length on contiguous frames with the same label in the
montage.

Specifically, we can rewrite the warped montage M’ as a se-
quence of subsequences, { M7, M}, ...}, such that each subse-
quence of frames or segment M = {l,1, ..., 1} comes from a
single take [. We then impose the constraint that the length of
each segment M J’ must be greater than a threshold d, set to 60
frames in our experiments. We hereon refer to this constraint
as the Segment Length Constraint and discuss its quantitative
and qualitative effect in the results of the user study.

The formulation for the optimal montage M’* now becomes,
M"™ = argr&i/nCT(M’) (11)
s.t. M| > d, Vj (12)

This formulation is equivalent to a Semi-Markov Condi-
tional Random field that can be solved exactly with another
dynamic-programming-based algorithm [18]. The computa-
tional complexity of the algorithm is O(n?m?) where again
n is the number of frames and m is the number of takes.



Unwarping the Montage

We now have an optimal warped montage M’ of length n
frames where the frames come from the warped takes. We
next unwarp the montage to preserve the original speed at
which the takes were recorded. We consider the span of
frames for each segment M’ in the warped montage and re-
place it with the corresponding interval of frames, M from
the original take. Each corresponding interval is determined
by the corresponding mapping function w;. Thus, the un-
warped montage, M, is a sequence of intervals of poses from
the original takes 7;’s.

Motion Blending

As a last step, we blend the poses around the transitions be-
tween takes in M to ensure temporal coherence. We consider
awindow of length 15 frames centered at each transition point
and blend the poses using a linear weighting scheme. For
blending, we use linear interpolation of the translation vec-
tors and spherical linear interpolation of the rotation quater-
nions [19].

CREATING MONTAGES FOR MORE THAN ONE OBJECT
When animating more than one object, the user can record
the takes of the first object at his preferred speed. However,
the motion of any new object typically have to be synchro-
nized with those of a previous object. Hence after recording
the first object, the motions of all previous objects are played
in realtime on-screen as the new object’s motion is recorded.
This approach is similar to the layered animation recording
approach of 3D Puppetry [9]. In the end, all the takes for
new objects are of the same length. They can then be anno-
tated and composited into the montage by the same process
as described above, skipping the time warping stage.

Recording motion for a current object while the previously
recorded motions of other objects play on the screen can be
difficult since the user has to plan the current object’s motion
based on where other objects will be in future. For example,
if the two objects are supposed to touch each other, they may
end up passing by each other without touching or perhaps
intersecting each other.

We provide spatial markers to alleviate this problem. The
user adds a spatial marker for an object by navigating to a
frame in the timeline of the object’s montage and pressing a
key. The spatial marker appears as a grey version of the object
in that pose of the montage. It is also marked on the timeline
as a pink bar. Figure 5 shows the usage of spatial markers in a
sample script. Please see the supplementary video to see the
use of the markers in action. To avoid visual clutter, we do
not allow two markers for the same object to be placed within
60 frames of each other. We chose this empirically. The user
can remove the markers by clicking on them and pressing a
key. Spatial markers can serve as a sparsely sampled motion
trail for an object where the user chooses the sampling.

SYSTEM PERFORMANCE

The system runs in realtime on a desktop PC with two 6-
core 3.33GHz Xeon processors and uses at most 400MB of
RAM. To achieve this performance, the implementation is

Figure 5. Mario (left, with red hat) is supposed to hit the Monster’s head
(right) in the script. The user adds a spatial marker for the Monster’s
position at the supposed time of the hit (3D replica in grey) to help plan
Marios motion. The markers position in time is shown as a pink bar on
the timeline.

multithreaded with separate threads for processing the cam-
era feed, tracking and rendering. The algorithm for merging
the takes usually operates in realtime. In our experiments, the
length of a take is on the order of a few thousand frames (few
minutes at 30fps) and the typical number of takes on is about
10. Computing a montage at this scale takes under a second.

USER STUDY: SINGLE OBJECT MONTAGE
MotionMontage combines takes in a way that tries to pre-
serve the parts most liked by the animator and discard the
disliked parts, while keeping the whole animation temporally
coherent. We conducted a user study to understand the per-
formance of the system in two ways. First, we observed users
creating and annotating the original takes. Second, we eval-
uated whether the montage is indeed perceived to be better
than the original takes. We also analyzed the effect of the
Segment Length Constraint in the animators’ montages.

Phase 1: Creating animations

The goal in the first phase was to familiarize the participants
with using the system, then have them record takes and create
a montage for a story script. We call the participants of this
phase the animators.

Introduction to System

The animators were first given an introduction to the hard-
ware setup and the capabilities of the system. We then
demonstrated the process of recording takes, annotating them,
and creating a montage for a simple script —

Mario
“Mario is happily walking around the park. He first takes a
round in a clockwise direction and then turns back and takes
a round in an anti-clockwise direction.”

Figure 6 shows a screenshot of this story. After the demo, the
animators were asked to practice using the system by acting
out this script, thus familiarizing themselves with the system.

Task Design
After the demo, we asked the animators to record three takes
for the following script —



Figure 6. A screenshot of the demo script - Mario.

Soldier takes a Break

“A soldier is guarding a castle by marching in front of it, back
and forth. “This is so boring”, he thinks. The weather is nice
and he decides to take a walk around the castle’s pathway.
He looks around to see if anybody is watching him. Nobody
else is there, so he starts his casual stroll. Slowly he becomes
more and more carefree. Jumping around with joy, he does
not notice a banana peel that is lying on his path. He steps on
the banana peel, slips and falls down. He gets up slowly with
effort and limps towards back to the castle. The monotonous
routine starts again, guarding the castle by marching in front
of it, back and forth, now with a limp. He finds it very hard to
walk now and stops marching after reaching the other end.”

Figure 7 shows a screenshot of this script. The animators
were shown a sample path of the soldier and the goal was to
record takes which roughly followed this path, while acting
out the story script. We encouraged participants to try differ-
ent motion styles on each take to better express the script. Af-
ter recording the takes, the participants first viewed each take
and then annotated them in a second viewing. The system
used the annotated takes to create a montage. To conclude,
the animators filled out a short questionnaire about their ex-
perience with the system.

Participants

Twenty participants (ten female, ten male, ages 20 to 30) vol-
unteered to create animations with our system. None of them
had prior 3D animation experience. The study took about one
hour for each participant. At the end of this phase, we had 3
takes and 1 montage for each of the 20 animators.

Phase 2: Comparing animations.

A week after the first phase we ran the second phase of the
experiment. The goal in phase 2 was to compare the quality
of the animations recorded in the first phase. We refer to the
participants in this phase as scorers. Note that some of the
scorers were also the animators in the first phase.

Task Design

We asked the scorers to perform binary comparisons between
amontage and one of its takes recorded by a randomly chosen
set of 10 animators. The scorers first read the script which
the animators had acted out. In each comparison, the scorer
watched one of the three takes and the montage in a random

Figure 7. A screenshot of the script - Soldier takes a Break.

order. The scorer then selected the animation they would have
preferred if they were the script’s director. Note that scorers
only rated one of the animator’s takes against the montage
instead of ranking all 3 takes and the montage. We designed
the task this way to reduce visual fatigue for the scorer. If a
scorer was also an animator in Phase 1, we made sure that he
did not do a binary comparison for his own animations.

In addition, if the scorer was also one of the animators, we
added a second task. We asked them to rank all four anima-
tions (3 takes and 1 montage) that they created, ranking them
from 1 to 4 (1 being the best) after watching them in a ran-
dom order. This approach gave us a complete ranking of the
animations from the animator’s own perspective.

Participants

42 participants (21 female, 21 male, ages 20 to 30) volun-
teered for this phase. Of these, 20 were the animators from
Phase 1. Each scorer’s study lasted for about 50 minutes. At
the end of the phase, we had 420 comparison samples, or 7
samples per comparison between a take and a montage for
each animator. Additionally, we had each animator’s ranking
of their own takes and resulting montage.

Results

We analyze the results of the experiment in four ways. First,
we present a quantitative analysis of the perceived quality
of the montages from the animators’ perspectives. Second,
we present a similar analysis for the perceived quality of the
montages from scorers’ perspectives. Third, we present some
qualitative feedback from the animators about their experi-
ence with the system. Finally, we present a brief discus-
sion about the effect of the Segment Length Constraint on
the montages.

Animators’ perspective

We analyze animators’ rankings of their own animations
(Take 1, Take 2, Take 3, Montage). Figure 8 shows the that
the average rank of the montage, averaged over all the ani-
mators, is much better than any of the three takes. We run a
Friedman test with rank as an ordinal variable and animation
as a nominal variable. animation is found to have a statis-
tically significant impact on rank, x?(df = 3,N = 20) =
26.88, p < 0.0001. Thus, we can conclude that the animators
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Figure 8. Average ranks for the takes (shown in the order originally
recorded) and the resulting montage, as reported by animators evaluat-
ing their own work, averaged over the animators.
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Figure 9. Probability that montage is better than a take for animators.

significantly prefer their montages to any of their individual
takes.

Scorers’ perspective

Next, we analyze how scorers rate other people’s animations,
to see if they generally prefer montages to original takes. We
first compute how frequently the montage is perceived to be
better than an individual take. The proportion of the scorers
who voted for the montage vs. each of the 60 takes is shown
in Figure 9. For further analysis, we denote the fraction of
the ratings that chose the montage for animator ¢ better than
take j as myj, i.e., if m;; = 1.0 then all 7 scorers rated the
montage better, and a score of 0 has the opposite meaning.

We test three hypotheses.

H1. The average probability of an animator’s montage be-
ing better than a take is greater than random chance, i.e.,
p(ms;) > 0.5. A one-tailed single sample t-test indicates
that the probability of the montage being better (1 = 0.6457,
o = 0.133) is significantly greater than 0.5 (¢(19) = 5.18,
p < 0.0001).

We note that this t-test may be biased by the fact that we had
only 7 binary samples to compute each m;;. Hence we also
test if the outcome of a binary comparison between the mon-
tage and a take is random. A chi-squared test over the set of
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Figure 10. Probability that montage is better than all the takes for ani-
mators. The red line is the probability for random chance, 0.125.
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Figure 11. Probability that montage is better than a take (in the order
they were recorded).

all 420 binary comparisons indicates that the chance of mon-
tage being better than a take is not random (p < 0.0001).

H2. The probability of the montage being better than all the
three takes for an animator is greater than random chance.
This probability for an animator ¢ is given by (m;; * m;g *
m;3), and we denote it as b;. Thus the hypothesis can be re-
stated as p(b;) > 0.125. Figure 10 shows the probabilities
b;’s for individual users. For all but 2 of the animators, the
probability is higher than random chance. We first use a good-
ness of fit test and confirm that the b;’s follow a normal dis-
tribution. Then we perform a one-tailed single sample t-test;
the results of this test indicate that the probability of the mon-
tage being better than all the takes (1 = 0.299, 0 = 0.126) is
significantly greater than 0.125 (¢(19) = 4.555, p < 0.0002).

H3. The probability of the montage being rated better than
an individual take significantly depends on the order of the
takes, i.e. m,; is related to j. Figure 11 shows the average
probability and standard errors of the montage being better
than individual takes averaged over animators. We conduct
a mixed-model analysis with take j as the fixed effect, user
i as random effect and probability m;; as the observed vari-
able. The analysis indicates that there is no significant effect
of the order of take on the probability of montage being bet-
ter, (F'(2,38) = 0.8277,p = 0.4448). We also validate the
correctness of this analysis by running a goodness of fit test
on the residuals and verify that they are indeed normally dis-
tributed. Hence we reject this hypothesis.

Qualitative feedback
All the users said that they liked the capability of recording
multiple takes for the story, since they did not have any prior



animation experience and wanted to try out different styles.
They were excited about the ability to annotate different parts
of the takes and that the system could combine the takes for
them. A few users suggested that the method of annota-
tions required patience as they had to watch whole animations
while annotating them. Further, they had to mentally remem-
ber the different parts from takes that they wanted to appear in
the montage and annotate the takes accordingly. This leads to
an interesting future direction of research of developing ways
to summarize and visualize the takes together.

Effect of the Segment Length Constraint

The Segment Length Constraint in computing the montage
ensures that the minimum length of a contiguous set of frames
taken from a take must exceed a minimum threshold. This
threshold was empirically chosen to be 60 frames, i.e., a time
duration of 2 seconds. The goal of this constraint was to pre-
vent quick take transitions in the montage.

For half the animators, the optimized montage contained no
quick transitions even without the constraint. For the other
half, adding the constraint avoids such segments but results in
a montage with a slightly higher cost. However, the increase
in the cost was found to be less than 1% in all the 10 cases.
Hence the proposed algorithm is able to enforce the Segment
Length Constraint without significant penalty.

Results summary and discussion

The results suggest that both the animators and the scorers
significantly preferred montages. It is interesting to note that
the average rank assigned by the animator is affected by the
order in which takes were recorded. The rank is better for a
take that was recorded later. We speculate that the animators,
who were creating animations for the first time, grew better at
acting out stylized motions with subsequent takes. However,
the non-animator scorers’ preference for the montage over the
takes does not depend on their order to a statistically signifi-
cant degree. This result does not support the conclusion that
overall animation quality increases as animators gain more
experience. We do not have a hypothesis for this difference
and leave the understanding of visual or psychological per-
ception in such animations to future work.

CONCLUSION AND FUTURE WORK

We have presented a system, MotionMontage, which allows
users to record 3D animations involving multiple objects, one
object at a time. The user can experiment with different mo-
tion styles and trajectories and record multiple takes for each
object. The system allows the user to temporally annotate
each take to indicate which parts of which takes are consid-
ered better or worse. The system then uses a novel formula-
tion to combine these annotated takes into a montage. The
same process can be performed sequentially for all the ob-
jects in the animation. The recording of takes for more than
one object is handled via the traditional layered animation ap-
proach. We provide spatial markers to help the user see the
recorded motions of other objects while recording the current
object’s motion.

We also reported on a user study to qualitatively and quan-
titatively measure the efficacy of MotionMontage from the

animators’ and the scorers’ perspectives. The results indicate
that the montage is significantly preferred over the original
takes by both. In the supplementary video, we also show
some multi-object animations created by a few users. The
users found the system intuitive and indicated that the spatial
markers helped them to record object interactions better in the
animation.

We have identified a few directions for future work.

Better animation recording setup.

The users of our system suggested demarcating the physical
volume of play area. This would prevent a user from moving
the controller outside the volume which leads to loss of track-
ing. In addition, the current system uses a standard (and cum-
bersome) mouse-driven interface to adjust the camera’s view-
point on the screen; however, we could instead use a tracked
object to adjust the camera.

Currently, a big challenge while recording the animations is
to correctly handle the interactions between the animated ob-
ject with the virtual scene props and with previously animated
objects. The spatial markers can help to some extent, but
the lack of physical proxies for other objects makes it hard.
Allowing users to use physical proxies or automatically in-
ferring the user’s intent from the recording can alleviate this
challenge and suggests an interesting avenue for future work.

To further improve the richness of the 3D animation, we are
interested in enabling articulated 3D characters in the anima-
tion. Difficulties in mapping the articulation of physical ob-
jects to a character’s motion will require new, intuitive pup-
petry interfaces.

The current interaction design of MotionMontage can be ex-
tended to a multi-modal interface involving voice, gestures,
multiple physical controller objects, etc. Using multiple
modalities may provide more natural interfaces but may make
the system more complex to use. In the future we would like
to explore this multi-modal interaction space and try to find
a good trade-off between user empowerment and intuitive,
easy-to-use interfaces for creating 3D animations.

Exploration of the annotation setup.

We enabled the users to annotate a recording easily by ma-
nipulating a physical slider while the recording played in re-
altime. The users may find it hard to keep up with the realtime
pace of the recording and hence we added a lag in the annota-
tions based on the human reaction time. However, this is just
a heuristic. There can still be parts of the recording where the
annotations are slightly delayed or ahead in time, specially
in case of fast paced recorded motion. Our algorithm cre-
ates a montage which transitions smoothly between the takes
while respecting these rough annotations. We also tried a key-
board and mouse-based interface which allowed users to se-
lect parts of different takes, play the selected parts, and then
annotate them. This interface gives more control to the user
and hence more accurate annotations. However, this process
can become tedious for lay users. Hence we chose a simpler
interface that results in rough annotations and focused more
attention on developing an algorithm which combines these
roughly annotated takes into the montage. In the future, it



will be interesting to study the design of different annotation
interfaces and their effect on the montage.

Enable audio recordings.

We would like to add the capability of recording audio
voiceovers in the system. Currently, audio can be added after-
ward using standard audio-video processing software. How-
ever, some users indicated that they were actually humming
and speaking in their mind while acting out the story, and
would have liked to record audio while animating. Rubin et
al. [16] have recently developed tools for editing and merg-
ing multiple audio takes of a story; it would be interesting to
combine their tools with our motion editing interface.

In sum, we have presented a novel system that allows novice
users to explore their creativity through the medium of 3D
animated stories. We learned from our user studies that such
animation creation systems can empower the user while be-
ing intuitive, with easy-to-use interfaces. We believe that Mo-
tionMontage is a small step in this direction and hope that our
work motivates more researchers to explore this domain.
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