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Abstract

We address image parsing in the setting of architec-
tural scenes. Our goal is to parse an image into regions
of various types such as sky, foliage, buildings, and street.
Furthermore we parse the building regions at a finer level
of detail, identifying the positions of windows, doors, and
rooflines, the colors of walls, and the spatial extent of par-
ticular buildings. Recognizing these individual elements is
often impossible without the context provided by the initial
parsing of the image, for instance a roofline is only defined
in relation to the building below and the sky above. Our
approach is driven by recognition of generic classes of vi-
sual appearance, e.g. for foliage. The generic recognition
results boot-strap an image specific model that provides re-
fined estimates to use for matting, segmentation, and more
detailed parsing.

1. Introduction
I stand at the window and see a house, trees, sky.
Theoretically I might say there were 327 bright-
nesses and nuances of colour. Do I have ”327”?
No. I have sky, house, and trees.

– Max Wertheimer 19231

Max Wertheimer, the founding father of the Gestalt
movement, began his classic paper on visual grouping by
referring to a common everyday occurrence, which has nev-
ertheless proved quite challenging for computer vision re-
search. How is it that we interpret images such as Figures 1
and 6 segmenting them into sky, foliage and building, and
further parsing the buildings into roof, wall, windows, doors
etc. A generic approach to this specific problem is the pri-
mary contribution of this paper.

First, some motivation. Visual recognition, specifically,
object recognition typically aims at developing techniques

0Visiting U.C. Berkeley
1Translated from German.

Figure 1. Top: We begin by parsing the original image into five vi-
sual categories (sky, building, foliage, street and sky-mixed). Bot-
tom: We then perform a detailed parse to compute the roofline,
building and roof boundaries, and windows. In addition we esti-
mate color models for the walls of the building and the roof of the
building.

independent of the particular classes of objects. Surely, we
do not wish to spend years writing papers on motorcycle
detection, tiger detection, armadillo detection et cetera ad
nauseam! However, some object classes are particularly
important because they have additional structure and utility
that merit special consideration. Faces, and human figures
in general, are one example; handwriting is another. We
submit that architectural scenes are another such category.
Buildings serve as visual landmarks within an environment.
As a result directions are typically given in terms of build-
ings (i.e. the house just past the red building) and icons of
distinctive buildings appear in tourist maps. Similarly when
buying real estate buyers may shop for houses with particu-



lar features (i.e. certain types of windows, specific types of
colors, etc.).

Parsing the structure of buildings such as those depicted
in figure 1 is essential for these applications. The parsing
performance, while not necessarily perfect, has to be suffi-
ciently good, and the technique has to be applicable to a rea-
sonable range of scenes without significant “hand-holding”.
We are not aware of any current work which attains this
goal. Note that while there has been a fair amount of re-
search on interpreting aerial views of urban scenes [12],
those techniques don’t naturally carry over to the street-
level views that we are concerned with in this paper.

We situate our work as following in the broad tradition
of context based scene analysis, pioneered in recent years
by Tribal et al. [17], and more recently also by Hoiem et
al. [11, 10, 9]2. We distinguish our work from that in the
following respect. We aim to obtain higher performance by
restricting the domain to buildings (this is quantified with
respect to Hoiem et al. in Table 1) and in addition we want
to parse out detailed structures on buildings. The 3D inter-
pretation aspects of that work, using vanishing points, hori-
zon etc, are complementary to our analysis, which looks
more carefully at the pictorial structure of views of build-
ings. To emphasize a distinction with another line of work,
it is neither our aim to build 3D reconstructions in the style
of FACADE [6] or Criminisi et al. [5], nor to require 3D
information for finding detailed structures as in [15]. Our
work could be a pre-processing step for such systems.

2. Approach and Modeling

We approach parsing as a recognition problem both at
the coarse level of street, foliage, building, sky, and at the
detailed level of window, door, etc. Parsing proceeds in
stages and is loosely arranged around an underlying con-
ditional random field model [14, 13].

The first theme in our approach is that most features are
computed in a fixed window around each pixel, avoiding
the use of segmentation as a preprocessing step. Spatial
smoothness in the labels is enforced in two ways, first by
explicitly computing a color model for the particular sky
and buildings present in an image, and second with a local
spatial smoothness term in the model.

Finding detailed structures is intimately tied to coarse
classification of the image pixels into visual categories. To
this end, after an initial estimate of the spatial support of the
building is determined, an initial pass of roofline and win-
dow detection is used to refine the estimate. This is in turn
used to refine an estimate of roofline and window location.
This particular heuristic for inference again emphasizes the

2Also see more sampling heavy work on reconstruction from a single
image by Han and Zhu [8, 7]. Our work could be seen as providing a good
proposal strategy for that style of approach or the work in [18].

importance of some global parameters – it is initially more
useful to know that a building is salmon colored (enforc-
ing long range constraints) than to know that nearby pixels
probably share the same label (short range constraints).

Next we present the structure of the probabilistic model
and an outline of training. A detailed description of the fea-
tures used in modeling is found in Section 3 and includes
more information about training. The parsing procedure is
described later in Section 4 in order to permit discussion of
some relevant detail.

2.1. Probabilistic Model

Our system is built around a conditional random field
model:

p(L|I) ∝
∏

i

gi (1)

With labels, L = {li}, an image I , and potential func-
tions gi. There are two types of labels, lpi a “coarse” la-
bel for each pixel in the image, and ldk a “detail” label for
each potential detail feature such as window, door, etcetera
in the image. The per pixel, coarse labels, lpi are modeled
using multinomial distributions over the labels: street, fo-
liage, building, sky, and mixed sky3. The detail labels ldk are
instantiated for each potential detail detected in the image,
and have parameters such as location (like the per pixel la-
bels) but also size, type (window, door, roof, etc), color if
appropriate, and a probability. The two types of labels have
different, adaptive, neighborhood structures as discussed in
Sections 3 and 4.1. The potential functions gi come in four
flavors, for coarse or detailed labels, and either image fea-
tures or surrounding labels in the appropriate neighborhood.

Instead of modeling probabilities as dependent on the
image, I , directly, they are modeled in terms of features
fm(I) computed from the image. Descriptions for each fea-
ture are found in Section 3.

2.2. Training

The models are trained using a set of hand labeled ex-
amples. The basic subroutine in the learning stage is to
count the number of times a certain label co-occurs with a
certain feature value combination as an empirical estimate
of p(li|fm). The specific sets of features considered are
discussed in Section 3. We use two types of models for
p(li|fm), either a k nearest neighbor density estimate, or
support vector regression, depending on the particular set
of features. The prior distribution over visual categories is
taken to be uniform, and features are modeled as indepen-
dent. Given the large neighborhoods exact training and in-
ference would be very expensive, and using simply learned

3mixed sky “catches” parts of image that have a bit of sky and of build-
ing or foliage, but do not look like either one alone. This is especially
important with patch based features.



models is sufficient to illustrate the technique, while provid-
ing potential room for improvement.

3. Features for Parsing
Features are computed throughout the image and are

used to determine:

p(li|I,Θ) ∝
∏
m

p(li|fm)

with the two simplifying assumptions in the previous
section.

In the following subsections we present the basic fea-
tures and list the combinations of basic features used to
make up the fm as well as the model used for p(li|fm). The
coarse label for a pixel depends directly on features com-
puted in a square window directly around that pixel (as well
as, of course, on the labels of surrounding pixels). The size
of the window is 21× 21 pixels for a 400× 600 image and
scales with the image diagonal.

Additional features are relevant to detecting the detailed
structures such as windows and doors on buildings. These
are combinations of the contour features discussed below
into right angles and t-junctions. Section 4 includes addi-
tional description of the detailed parsing stage.

3.1. Color Histogram Feature

The colors in a patch are vector quantized in L.a.b. color
space with the Euclidean norm using k-means with 10 cen-
ters. Histograms are compared using Mallow’s distance
(aka earth mover’s distance [16]) where the distance be-
tween points is the euclidean distance in L.a.b. space.

3.2. Contour Feature

Generally the structure of edges is a useful feature for
parsing images of buildings, (cf the Manhattan world as-
sumption [4]). Contours are detected by local non-max
suppression on the output of the Gaussian quadrature based
elongated odd edge filters at 8 orientations. These are then
represented by line segments constrained to be within 2 pix-
els of the contour. The features are a histogram of how
many edge segments are present at each of 8 orientations,
and how many edge segments have lengths falling into each
of five log spaced bins by length.

3.3. Texturedness Feature

We model texture as simply as possible by just aggregat-
ing the total amount of edge energy in a region using the
same filters as for contour extraction.

3.4. Position Feature

We use a rough position feature based on height as a per-
centage of image height. As can be seen in the figures in

supplemental material [3], the actual height in the image
where streets or buildings or trees are found varies signifi-
cantly, but generally the street is down and the sky is up.

3.5. Feature combinations and models

The basic features above are combined into five different
feature sets and used to predict coarse labels as follows:

1. Color Histograms are used alone and modeled with k
nearest neighbors on a quantized version of the train-
ing data. A set of around 200 (varies by experiment)
representative histograms are found that cover the en-
tire set of training data with balls of fixed radius with
respect to the Mallows distance. The class distribution
of training data within the same fixed distance of a rep-
resentative histogram is computed on the training data.
For a new histogram the estimated class distribution
is just an average of the class distributions for its 10
nearest neighbors. This is a variant on edited nearest
neighbors.

2. Texturedness and position: Texturedness and the per-
centage height in the image for a 2 dimensional feature
and the class distribution can be modeled directly with
a histogram.

3. Central pixel Color and Texturedness: For the foliage
and sky categories we want to provide near pixel ac-
curacy in order to potentially use the result for image
matting. To this end, for these categories, we include
features based on support vector regression on the cat-
egory (foliage or sky) given the color of the central
pixel concatenated with the amount of texturedness in
the window surrounding the pixel to form a vector in
R4. The dimensions are scaled to have nearly equal
range. By themselves these features are not sufficient,
but they do help in localizing boundaries.

4. Contour Features and Average Color: The two con-
tour feature histograms and the average color in Lab
space are concatenated and compared using the Eu-
clidean norm. The class distribution is again modeled
with edited nearest neighbor density estimates.

5. Position: Since position is measured by percentage
height in the image the class distribution can be mod-
eled empirically by a count for each percentile of
height.

4. Parsing
We next describe the stages of parsing for a novel im-

age and provide a more in depth discussion of the detailed
parsing procedure.

The stages of processing for a novel image are as fol-
lows:



1. Compute image features – The basic features presented
in Section 3 are computed.

2. Per pixel coarse level parsing/recognition using only
unary potentials. The features are combined into fea-
ture sets and compared to the training data using the
models described in Section 3 to produce a distribu-
tion over coarse classification classes.

3. Estimate a per image color model for sky and building
– Using pixels with high confidence for sky or building
labels, a color model for the image is fit using k-means.
This allows the algorithm to “realize” that the sky is
blue in a particular image.

4. The per pixel coarse level parsing is repeated now aver-
aging together the generic model for coarse label given
color with the color model learned in the previous step.
(The combination parameter was learned by cross val-
idation.)

5. Spatial smoothing of the per pixel label probabili-
ties. The potential for label co-occurrence in a square
around each pixel is learned from labeled training data
and iterated five times to smooth label probabilities.

6. Detecting detailed structures.

7. ( Optionally iterate steps 3-6.)

8. Spatial smoothing of detailed structure probabilities.

4.1. Detailed Parsing

The detailed labels ldj are somewhat different than the per
pixel coarse labels. There are potentially a huge set of de-
tailed labels based on the various parameters for each label
– each type of feature, door, window, roof, roofline, build-
ing boundary, power-line, and bare-tree – and for each, lo-
cation, scale, and if applicable aspect ratio and color model.
In order to manage this potentially huge number of labels
we use labeled data to train detectors for the various de-
tailed features, and only instantiate label variables ldj when
the detector is above a threshold set to keep the number of
labels on the order of tens of thousands and below millions.

The detectors for the linear structures such as rooflines,
bare trees, and building boundaries are based on the con-
nected contours detected by the contour features computa-
tion and the coarse labels immediately surrounding the con-
tour. The detectors for the window and door features are
based on detecting nearly right angles and t-junctions (of
nearly right angles) in the contour map and the underlying
coarse labels.

Once labels are instantiated they are assigned a probabil-
ity using a data driven model over the parameters mentioned
above for each type of detailed feature and the immediately

surrounding coarse pixel labels (the neighborhood for that
label). This model is again an edited k nearest neighbor
density estimate.

For the window labels an additional round of data driven
spatial smoothing is applied with the neighborhood for each
window label consisting of any window labels overlapping
in row or column, and any roofline labels. An example of
this is shown in the supplemental material [3].

For coarse pixel labels, the neighborhood is a square
twice the side-length of the square used to compute image
features relevant to that pixel and centered around the pixel.
For detail labels the neighborhood depends on the size and
type of structure. As an example, for windows the neighbor-
hood contains all coarse labels under the extent of the win-
dow as well as in a buffer zone 30% again as large around
that region. Also any other window labels with overlapping
vertical or horizontal extent in the image are included, as is
any roofline label above the window’s extent.

5. Experiments
We take three approaches in evaluating the effectiveness

of our parsing system: 5.2 measures the information gain
due to some of our individual features and their combination
against the output of another system, 5.3 visualizes the de-
tailed parsing produced in the final stage of our system, 5.4
demonstrates how this detailed information makes it possi-
ble to search or browse a collection of roadside images by
meaningful features such as building color (as opposed to
image color) facade layout, and window design.

5.1. Scene Collection

Our images come from a variety of sources (see ac-
knowledgments) including our own collection and photos
from [2] and [1] and are taken around the world. Training
images were labeled by hand for sky, buildings, trees, street,
windows, and roof lines. These images are more limited in
variation than the image data set as a whole.

5.2. Information Gain Measurements

We measure the relative information gain, R(X;Y ), be-
tween a feature X and a label Y , defined as:

R(X;Y ) =
I(X;Y )
H(Y )

(2)

=
H(X) + H(Y )−H(X, Y )

H(Y )
(3)

Here I(X;Y ) is the mutual information between X and
Y and H(X) is the entropy of X . The relative information
gain tells how much a feature X reduces the entropy in a
guess of Y as a ratio to the amount of entropy in Y by it-
self. Values for R fall between 0 and 1, with small values



indicating that little information is added by the feature and
large values the opposite.

Table 1 shows the relative information gain provided by
the color, texture and position, and position features on our
dataset. For each feature we measure how much it tells
about each label. As a comparison the relative information
gain provided by the output of Hoiem et al.’s code on our
data is shown in the same table.

For our training and test we use cross validation with
four splits of 30 training and 11 testing images. Variance
was less than 0.02 in all cases.

Table 1. Relative Information Gain (Our dataset)
Sky Foliage Building Street

Hoiem et al.
por 0.20 0.50 0.16 0.05
sol 0.43 0.10 0.13 0.06
h90 0.54 0.24 0.50 0.12
000 0.30 0.12 0.16 0.34
sky 0.85 0.15 0.20 0.18

This Work
texture & pos 0.65 0.15 0.21 0.35
color hist 0.77 0.52 0.27 0.20
pos 0.41 0.02 0.15 0.33
combination 0.88 0.56 0.37 0.47

Table 2. Relative Information Gain: Hoiem et al. Training & Test
sky por h090 000

texture & pos 0.62 0.19 0.06 0.45
color hist 0.67 0.13 0.13 0.15
pos 0.36 0.04 0.05 0.40

We note first that the Hoiem et al. result is quite impres-
sive. Despite being designed for a slightly different task and
trained on a separate dataset, their sky probability map (sky)
provides a great deal of information about the presence of
sky. Also their probability map for porous provides a good
information about trees. Side by side comparisons are avail-
able at www.cs.berkeley.edu/˜aberg/iccv07.

As might be expected the individual features shown pro-
vide some information about visual categories, but their
combination (generic) is better than any individual feature,
already providing significantly more information about the
location of street, buildings, and sky.

The image specific model provides a small boost in mu-
tual information, but the difference is more noticeable in the
parses themselves. Figure 6 gives a qualitative idea of our
results. Also smoothing does not greatly increase the mu-
tual information, but it can provide better looking parses,
especially by removing unsightly holes from buildings.

Table 2 shows the result of training and testing some of
our features on the Hoiem et al. geometric context dataset

of 300 labeled images split into 5 training and test combi-
nations for validation. Here training, testing, and the vocab-
ulary of labels are different than Table 1, but some measure
of the relative difficulty of the datasets is shown. Position
alone tells more about the Hoiem et al. ground label (000),
than about street in out dataset. Foliage seems much easier
to identify using color in our dataset, then the more general
category porous in theirs.

5.3. Example Labellings

Next we present parses of images into visual categories
and detailed structures.

Figure 6 illustrates the processing pipeline for our algo-
rithm. Starting with the initial image in the left column,
the second column shows the parse using generic category
models. This represents the combination of all the fea-
tures. The color indicates the most likely visual category
at each pixel. (The legend in Figure 1 applies here as well.)
Note that sometimes sky or street is the most likely color in
some building regions, this indicates a relatively soft posi-
tion model. The third column shows the result of our image
specific parsing where the building color and sky color in
the particular image are estimated and used. This usually
reduces the number of mistaken pixels in the building re-
gion. Local spatial smoothing of the labeling produces is
in the fourth column. Building color is estimated, but not
shown in this figure, see [3] for full parses. Finally the de-
tailed parse is in the last column. One striking feature is the
range of architectural scenes that can be parsed with this
simple model.

5.4. Similarity and Search

We show examples of how this additional structure might
be used to drive novel similarity based search or browsing
through collections of roadside images. Because we can
obtain a good estimate of building color it is possible to
search for buildings of similar color as shown in Figure 4.
Note that though the building color itself is sometimes a
small portion of the image, the search automatically ignores
other parts of the image that would confuse a color simi-
larity search based on the whole image. Also similarity in
the layout, aspect ratio, and number of windows can pro-
vide clues to building similarity as shown in Figure 2. Fi-
nally by extracting windows from all of the images we can
browse roadside images by their windows and group similar
windows Figure 3. All of these detailed features would be
nearly impossible to extract without the contextual informa-
tion provided by the initial parsing into visual categories.

6. Conclusion
We have presented a system for parsing architectural

scenes – first segmenting them into the basic visual cate-



Figure 2. Window layout similarity based search (# stories and
# windows/story): Using the image at upper left as a query, the
rest of the database is ranked by similarity of window layout. The
remainder of the top row shows the most similar matches. The
bottom row shows the least similar buildings.

Figure 3. Window appearance similarity search: Using the image
at upper left as a query, the rest of the windows in the database
are ranked by appearance similarity. The remainder of the top
row shows the most similar matches. The bottom row shows the
least similar. The actual database contains 709 windows.

gories sky, foliage, building and street, and further parsing
out detailed structure including rooflines, walls, windows,
doors etc. The system is driven by fixed-size patch-based
features, but produces results comparable or better than the
state of the art for parsing into basic categories and identi-
fying detailed structures. A key idea in our system is first
applying a generic appearance model, and using this to fit an
image specific appearance model. We demonstrate how our
parsing results can be used to drive similarity search based
on semantically relevant structures on buildings.
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Figure 5. A sampling of automatic window detections from our dataset, illustrating the wide variety of windows present. Some window-like
patterns are detected as windows. Can you spot the garage doors or car windows?
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Figure 6. Examples of images passing through the processing pipeline, see Figure 1 and Section 5.3. The legend for parsing can be found
in Figure 1. Many more examples are available [3].


